函数f(x)=Asin(ωx+ωπ) (A>0 ω>0)的图象在[-2π/3,-3π/4]上单调递增,则
函数f(x)=Asin(ωx+ωπ)(A>0ω>0)的图象在[-2π/3,-3π/4]上单调递增,则ω的最大值是...
函数f(x)=Asin(ωx+ωπ) (A>0 ω>0)的图象在[-2π/3,-3π/4]上单调递增,则ω的最大值是
展开
展开全部
函数f(x)=Asin(ωx+ωπ) (A>0 ω>0)的图象信粗在[-2π/3,-3π/4]上单调递增,则ω的最大值是
解析:∵函数f(x)=Asin(ωx+ωπ) (A>0 ω>0)的图象在[-3π/4,-2π/3]上单调递增
ωx+ωπ=-π/2==>ωx=-ωπ-π/2==> x=-π-π/(2ω)
令-π-π/(2ω)<=-3π/4==>ω<=-2
∴f(x)=Asin(-2x-2π)在x=-3π/4处取极小值,在[-3π/4,-2π/3]上单调递知空增
ωx+ωπ=π/2==>ωx=-ωπ+π/2==> x=-π+π/(2ω)
-π+π/(2ω)>=-2π/3==>ω<=3/2
∴f(x)=Asin(3/2x+3/2π) 在x=-2π/3处取极大值,在[-3π/4,-2π/3]上单调递增
∵ω>0
∴0<ω<滑猛镇=3/2,ω的最大值是3/2
解析:∵函数f(x)=Asin(ωx+ωπ) (A>0 ω>0)的图象在[-3π/4,-2π/3]上单调递增
ωx+ωπ=-π/2==>ωx=-ωπ-π/2==> x=-π-π/(2ω)
令-π-π/(2ω)<=-3π/4==>ω<=-2
∴f(x)=Asin(-2x-2π)在x=-3π/4处取极小值,在[-3π/4,-2π/3]上单调递知空增
ωx+ωπ=π/2==>ωx=-ωπ+π/2==> x=-π+π/(2ω)
-π+π/(2ω)>=-2π/3==>ω<=3/2
∴f(x)=Asin(3/2x+3/2π) 在x=-2π/3处取极大值,在[-3π/4,-2π/3]上单调递增
∵ω>0
∴0<ω<滑猛镇=3/2,ω的最大值是3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询