曲线y=1+根号4-x²与直线y=k(x-2)+5有两个交点,则实数k的取值范围是
y=1+√(4-x²)
满足条件
(y-1)² = 4 -x²
(y-1)² + x² =4
且 y>=1
所以是圆(y-1)² + x² =4, y>=1以上的半圆。
半圆圆心(0,1) 半径=2
直线y=k(x-2)+5 ,标准型是
y-5 = k(x-2)
过定点 (2, 5)
半圆左右端点用方程组
y=1+√(4-x²)
y =1
解得x1=-2, y1=1, x2=2, y2=1
(-2, 1) (2,1)
(2, 5) (-2, 1)所在直线的斜率
k1 = (5-1)/(2-(-2)) = 5/4
第2个k2,直接计算比较复杂,但可以用下图解:
下面计算PM的斜率
△OPQ △OPN全等
∠OPQ= ∠OPN
∠NPQ, ∠MOQ都跟QON互补
∠MOQ= ∠NPQ
∠M =π/2 -∠MOQ
设∠OPQ= ∠OPN = α
∠MOQ= ∠NPQ = 2α
∠M =π/2 -∠MOQ =π/2 - 2α
OQ = 半径 =2
PQ = PN = 5-1 =4
tan α = 2/4 =1/2
tan2α = sin2α/cos2α = 2sinα cosα/(cosα cosα - sinα sinα) = 2tanα/(1- tan² α)
= 2*1/2 / (1 -1/4) = 4/3
k2 = tan M = tan (π/2 - 2α) = cot 2α = 1/tan2α = 3/4
k的取值范围是
k2 < k <=k1
即
3/4 < k <= 5/3