如图,点C,D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行AB,并于弧AB相交于点M,N
1个回答
展开全部
解:
∵OA=OB
∴∠OAB=∠OBA
∵CD//AB
∴∠OAB=∠C,∠OBA=∠D
∴∠C=∠D
∴OD=OC=OA+AC=3+2=5
作OE⊥CD,交CD于E
∵tan∠C =½,即OE/CE=½
∴CE=2OE
根据勾股定理:OC²=OE²+CE²
5²=5OE²
OE=√5
连接OM,根据勾股定理
ME²=OM²-OE²=3²-(√5)²=4
ME=2
∵OE⊥MN
∴OE平分MN【垂径定理】
∴MN=2ME=4
如对你有帮助,请采纳,谢谢。
∵OA=OB
∴∠OAB=∠OBA
∵CD//AB
∴∠OAB=∠C,∠OBA=∠D
∴∠C=∠D
∴OD=OC=OA+AC=3+2=5
作OE⊥CD,交CD于E
∵tan∠C =½,即OE/CE=½
∴CE=2OE
根据勾股定理:OC²=OE²+CE²
5²=5OE²
OE=√5
连接OM,根据勾股定理
ME²=OM²-OE²=3²-(√5)²=4
ME=2
∵OE⊥MN
∴OE平分MN【垂径定理】
∴MN=2ME=4
如对你有帮助,请采纳,谢谢。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询