已知:如图,Rt△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D,与BA的延长线相交于F,且EF⊥
如图在RT△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D与BA的延长线相交于F,且EF⊥BC,垂足为E。设AC/AB=t,是否存在这样的t值...
如图在RT△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D与BA的延长线相交于F,且EF⊥BC,垂足为E。设AC/AB=t,是否存在这样的t值,使得△ADF相似于△EDB?请说明理由
别用三角函数做 , 我还没学呐,我才初二,但试卷上有这题啊,就用相似谁能做出来,还有别从别处复制答案,写的详细点.谢谢。 麻烦快点。 展开
别用三角函数做 , 我还没学呐,我才初二,但试卷上有这题啊,就用相似谁能做出来,还有别从别处复制答案,写的详细点.谢谢。 麻烦快点。 展开
1个回答
展开全部
存在t值,使△ADF∽△EDB.理由如下:
∵∠F=180°-∠FAD-∠FDA=90°-∠FDA,∠C=180°-∠CED-∠CDE=90°-∠CDE,∠FDA=∠CDE.
∴∠F=∠C.
∵∠ABD=∠C,
∴∠F=∠ABD.
在△ABD与△AFD中,∠F=∠ABD,∠FAD=∠BAD=90°,AD=AD,
∴△ABD≌△AFD.
∵△ADF∽△EDB,
∴△ADB∽△EDB,而相似比=DBDB=1.
∴△ADB≌△EDB.
∴∠ABD=∠EBD.
∴∠F=∠ABD=∠EBD.
∵∠F+∠ABD+∠EBD=90°,
∴∠F=30°.
∴∠C=30°.
∴∠ABC=60°.
∴ACAB=tan∠ABC=根号3.
∴t=根号3.
∵∠F=180°-∠FAD-∠FDA=90°-∠FDA,∠C=180°-∠CED-∠CDE=90°-∠CDE,∠FDA=∠CDE.
∴∠F=∠C.
∵∠ABD=∠C,
∴∠F=∠ABD.
在△ABD与△AFD中,∠F=∠ABD,∠FAD=∠BAD=90°,AD=AD,
∴△ABD≌△AFD.
∵△ADF∽△EDB,
∴△ADB∽△EDB,而相似比=DBDB=1.
∴△ADB≌△EDB.
∴∠ABD=∠EBD.
∴∠F=∠ABD=∠EBD.
∵∠F+∠ABD+∠EBD=90°,
∴∠F=30°.
∴∠C=30°.
∴∠ABC=60°.
∴ACAB=tan∠ABC=根号3.
∴t=根号3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询