
∫dx/根号(a²-x²)^3
展开全部
应该是令x=a *sinθ
那么dx=a *cosθ dθ,
而√(a²-x²)= a *cosθ
所以
原积分
=∫ 1/(a *cosθ)^3 *a*cosθ dθ
=∫ 1/(a *cosθ)² dθ
= 1/a² *∫ 1/cos²θ dθ
=1/a² * (tanθ +C),C为常数
而tanθ=sinθ /cosθ= x/√(a²-x²)
所以
原积分
=1/a² * (tanθ +C)
=1/a² * [x/√(a²-x²) +C] ,C为常数
那么dx=a *cosθ dθ,
而√(a²-x²)= a *cosθ
所以
原积分
=∫ 1/(a *cosθ)^3 *a*cosθ dθ
=∫ 1/(a *cosθ)² dθ
= 1/a² *∫ 1/cos²θ dθ
=1/a² * (tanθ +C),C为常数
而tanθ=sinθ /cosθ= x/√(a²-x²)
所以
原积分
=1/a² * (tanθ +C)
=1/a² * [x/√(a²-x²) +C] ,C为常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询