2个回答
展开全部
a(n+1)=1/(2-an)
a(n+1)-1=(an-1)/(2-an)
1/(a(n+1)-1)=(2-an)/(an-1)
1/(a(n+1)-1)=-1+(1/(an-1))
{1/(an-1)}为以1/(a1-1)=-4为首项,d=-1为公差的等差数列
a(n+1)-1=(an-1)/(2-an)
1/(a(n+1)-1)=(2-an)/(an-1)
1/(a(n+1)-1)=-1+(1/(an-1))
{1/(an-1)}为以1/(a1-1)=-4为首项,d=-1为公差的等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这种题目采用特征根解法。
将递推式中的项都当成x,不管是an+1还是an,然后把x解出来(1或2个解)
然后将原递推式的等式两边分别减去x。
如果是一个解,那么就得到一个新式子,然后取倒数稍微变形即可;
如果是两个解,那么就得到两个式子,同样取倒数,并且将两式相除再稍微化简即可。
例如:将式子中的an+1a(n+1)=1/(2-an)和an当成x,解出x=1,那么:
a(n+1)=1/(2-an)
a(n+1)-1=(an-1)/(2-an)
1/(a(n+1)-1)=(2-an)/(an-1)
1/(a(n+1)-1)=-1+(1/(an-1))
即它是等差数列。
望采纳~
将递推式中的项都当成x,不管是an+1还是an,然后把x解出来(1或2个解)
然后将原递推式的等式两边分别减去x。
如果是一个解,那么就得到一个新式子,然后取倒数稍微变形即可;
如果是两个解,那么就得到两个式子,同样取倒数,并且将两式相除再稍微化简即可。
例如:将式子中的an+1a(n+1)=1/(2-an)和an当成x,解出x=1,那么:
a(n+1)=1/(2-an)
a(n+1)-1=(an-1)/(2-an)
1/(a(n+1)-1)=(2-an)/(an-1)
1/(a(n+1)-1)=-1+(1/(an-1))
即它是等差数列。
望采纳~
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询