证明:设n是大于1的自然数,证明1+1/2+1/3+1/4+…+1/n不是整数。
展开全部
假定n>1(n=1时结论不成立)
假设1+1/2+1/3+1/4+…+1/n=M为整数,现在来推出矛盾。
设P=[1, 2, …, n]为1、2、……、n的最小公倍数(不是取n!),用P乘以上式两边,
P*(1+1/2+1/3+1/4+…+1/n)=P*M, ………………①
设k是满足2^k≤n的最大正整数,即2^k≤n<2^(k+1)。
显然2^k|P*M (n≥2, 2^k|P)。
下面证明P*(1+1/2+1/3+1/4+…+1/n)=P/1+P/2+…+P/n不是2^k的倍数,甚至不是2的倍数。
显然P*1/i是整数(i=1, 2, … . n)。
把P分解因数,其中质因数2出现的次数为k(2^k≤n<2^(k+1),所以2^k|P;又因为P是最小公倍数,所以P的因数中恰好含有k个2)。故P/2^k不再含素因子2,即为奇数。
P/1、P/2、…、P/n这些数中,除P/2^k外,其余各项都是2的倍数(因为分母的质因数中至多含有(k-1)个2,而分子含有k个2)。故P/1+P/2+…+P/n不是2的倍数(其中只有1个奇数,其余都是偶数)。这与①式右边为偶数矛盾!
假设1+1/2+1/3+1/4+…+1/n=M为整数,现在来推出矛盾。
设P=[1, 2, …, n]为1、2、……、n的最小公倍数(不是取n!),用P乘以上式两边,
P*(1+1/2+1/3+1/4+…+1/n)=P*M, ………………①
设k是满足2^k≤n的最大正整数,即2^k≤n<2^(k+1)。
显然2^k|P*M (n≥2, 2^k|P)。
下面证明P*(1+1/2+1/3+1/4+…+1/n)=P/1+P/2+…+P/n不是2^k的倍数,甚至不是2的倍数。
显然P*1/i是整数(i=1, 2, … . n)。
把P分解因数,其中质因数2出现的次数为k(2^k≤n<2^(k+1),所以2^k|P;又因为P是最小公倍数,所以P的因数中恰好含有k个2)。故P/2^k不再含素因子2,即为奇数。
P/1、P/2、…、P/n这些数中,除P/2^k外,其余各项都是2的倍数(因为分母的质因数中至多含有(k-1)个2,而分子含有k个2)。故P/1+P/2+…+P/n不是2的倍数(其中只有1个奇数,其余都是偶数)。这与①式右边为偶数矛盾!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询