求解齐次微分方程:(x^2+y^2)dx=xydy
1个回答
展开全部
方程变形为dy/dx=x/y+y/x.令u=y/x,则y=xu,dy/dx=u++x*du/dx,所以原方程化为
u+x*du/dx=u+1/u.所以udu=dx/x.两边积分1/2*u^2=lnx+lnC.代入u=y/x得通解y^2=2x^2ln(Cx).
另外x≡0也是微分方程的解.
u+x*du/dx=u+1/u.所以udu=dx/x.两边积分1/2*u^2=lnx+lnC.代入u=y/x得通解y^2=2x^2ln(Cx).
另外x≡0也是微分方程的解.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询