x^3+px+q=0通解是什么?

 我来答
匿名用户
2022-10-14
展开全部
x^3 +px + q = 0 的通解是:
x1 = ( -q/2 + ( (q/2)^2 + (p/3)^3 )^(1/2) )^(1/3) + ( -q/2 - ( (q/2)^2 + (p/3)^3 )^(1/2) )^(1/3) ;
x2 = m * ( -q/2 + ( (q/2)^2 + (p/3)^3 )^(1/2) )^(1/3) + m^2 * ( -q/2 - ( (q/2)^2 + (p/3)^3 )^(1/2) )^(1/3) ;
x3 = m^2 * ( -q/2 + ( (q/2)^2 + (p/3)^3 )^(1/2) )^(1/3) + m * ( -q/2 - ( (q/2)^2 + (p/3)^3 )^(1/2) )^(1/3) ;
其中:m = ( -1 + i * 3^(1/2) )/2 , m^2 = ( -1 - i * 3^(1/2) )/2
而三次方程的一般形式:
ax^3 + bx^2 + cx + d = 0
两边除以a,后设 x = y - b/3a,就可以化成 y^3 + py + q = 0 的形式:
p = c/a - b^2/(3*a^2), q = (2*b^3)/(27*a^3) - (c*b)/(3*a^2) + d/a ;
然后再用上面的公式就行了。其中x1肯定是实根。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式