已知函数f(x)在R上满足f(x)=2f(2-x)-x^2+8x-8,就f(x)的解析式?
1个回答
展开全部
令t=2-x,则x=2-t,代入方程得
f(2-t)=2f(t)-(2-t)^2+8(2-t)-8=2f(t)-t^2-4t+4
则f(2-x)=2f(x)-x^2-4x+4,
代入得f(x)=2[2f(x)-x^2-4x+4]-x^2+8x-8
则f(x)=x^2,8,函数f(x)在R上满足f(x)=2f(2-x)-x^2+8x-8
所以函数F(X)应该是二次函数
设F(X)=AX^2+BX+C
则F(2-X)=A(2-X)^2+B(2-X)+C=4A^2-4AX+AX^2+2B-BX+C
显然如果F(X)不是二次函数,f(x)=2f(2-x)-x^2+8x-8一定不成立.
又 AX^2+BX+C=2(A(2-X)^2+...,2,已知函数f(x)在R上满足f(x)=2f(2-x)-x^2+8x-8,就f(x)的解析式
f(2-t)=2f(t)-(2-t)^2+8(2-t)-8=2f(t)-t^2-4t+4
这个式子是怎么得来的
f(2-t)=2f(t)-(2-t)^2+8(2-t)-8=2f(t)-t^2-4t+4
则f(2-x)=2f(x)-x^2-4x+4,
代入得f(x)=2[2f(x)-x^2-4x+4]-x^2+8x-8
则f(x)=x^2,8,函数f(x)在R上满足f(x)=2f(2-x)-x^2+8x-8
所以函数F(X)应该是二次函数
设F(X)=AX^2+BX+C
则F(2-X)=A(2-X)^2+B(2-X)+C=4A^2-4AX+AX^2+2B-BX+C
显然如果F(X)不是二次函数,f(x)=2f(2-x)-x^2+8x-8一定不成立.
又 AX^2+BX+C=2(A(2-X)^2+...,2,已知函数f(x)在R上满足f(x)=2f(2-x)-x^2+8x-8,就f(x)的解析式
f(2-t)=2f(t)-(2-t)^2+8(2-t)-8=2f(t)-t^2-4t+4
这个式子是怎么得来的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询