如图,BE、DE是∠ABC、∠ADC的角平分线 求证:∠E=1/2(∠A+∠C)
展开全部
证明:将AB与DE的交点设为G,设∠CBE=∠1, ∠ABE=∠2, ∠CDE=∠3, ∠ADE=∠4
∵BE平分∠ABC
∴∠1=∠2, ∠ABC=2∠2
∴∠AFC=∠C+∠ABC=∠C+2∠2
∵DE平分∠ADC
∴∠3=∠4, ∠ADC=2∠4
∴∠AFC=∠A+∠ADC=∠A+2∠4
∴∠C+2∠2=∠A+2∠4
∴∠2-∠4=(∠A-∠C)/2
∵∠AGE=∠A+∠4, ∠AGE=∠E+∠2
∴∠A+∠4=∠E+∠2
∴∠2-∠4=∠A-∠E
∴∠A-∠E=(∠A-∠C)/2
∴∠E=(∠A+∠C)/2
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
∵BE平分∠ABC
∴∠1=∠2, ∠ABC=2∠2
∴∠AFC=∠C+∠ABC=∠C+2∠2
∵DE平分∠ADC
∴∠3=∠4, ∠ADC=2∠4
∴∠AFC=∠A+∠ADC=∠A+2∠4
∴∠C+2∠2=∠A+2∠4
∴∠2-∠4=(∠A-∠C)/2
∵∠AGE=∠A+∠4, ∠AGE=∠E+∠2
∴∠A+∠4=∠E+∠2
∴∠2-∠4=∠A-∠E
∴∠A-∠E=(∠A-∠C)/2
∴∠E=(∠A+∠C)/2
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
展开全部
连接EF则∠F是△FEB和△FED的双外角
∴∠F=∠E+1/2∠B+1/2∠D
即 2∠F=2∠E+∠B+∠D---------------------------1)
又 ∠F是△FBC和△FAD的双外角
∴2∠F= (∠A+∠D)+(∠C+∠B)------------2)
2∠E+(∠B+∠D)=∠A+∠C+(∠B+∠D)
∴2∠E=∠A+∠C
∴∠E=1/2(∠A+∠C)
∴∠F=∠E+1/2∠B+1/2∠D
即 2∠F=2∠E+∠B+∠D---------------------------1)
又 ∠F是△FBC和△FAD的双外角
∴2∠F= (∠A+∠D)+(∠C+∠B)------------2)
2∠E+(∠B+∠D)=∠A+∠C+(∠B+∠D)
∴2∠E=∠A+∠C
∴∠E=1/2(∠A+∠C)
追问
连接EF后,原先的∠F就被分成了两个角,后面不是要变的么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设BE、CD交于G,则∠BFD=∠GBF+∠BGF=1/2∠ABC+∠E+1/2∠CDE
于是,2∠BFD=2∠E+∠ABC+∠CDA①
又∵∠F是△FBC和△FAD的双外角
∴2∠BFD=(∠A+∠ADC)+(∠C+∠ABC)②
2∠E+∠ABC+∠ADC=∠A+∠C+∠ABC+∠ADC
∴2∠E=∠A+∠C
∴∠E=1/2(∠A+∠C)
于是,2∠BFD=2∠E+∠ABC+∠CDA①
又∵∠F是△FBC和△FAD的双外角
∴2∠BFD=(∠A+∠ADC)+(∠C+∠ABC)②
2∠E+∠ABC+∠ADC=∠A+∠C+∠ABC+∠ADC
∴2∠E=∠A+∠C
∴∠E=1/2(∠A+∠C)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询