如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°

(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判断四边形BCEF的形状,并说明理由.... (1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连接EF,试判断四边形BCEF的形状,并说明理由.
展开
wys050
2013-07-26 · 超过11用户采纳过TA的回答
知道答主
回答量:42
采纳率:0%
帮助的人:12.1万
展开全部
因为∠EDC=∠CAB,∠DEC=90°所以∠DCE=∠ACB ,∠DCE+∠ACD=∠ACB+∠ACD=90°即
EC⊥AC 所以AC∥DE
平行四边形
因为BF⊥AC,EC⊥AC ,所以EC∥BF 又因为DC=AB,三角形DEC=三角形ABF,EC=BF
所以是平行四边形
东莞大凡
2024-08-07 广告
在东莞市大凡光学科技有限公司,我们利用Halcon软件处理机器视觉项目时,会用到自定义标定板以满足特定需求。Halcon支持用户根据实际应用场景自定义标定板形状与标记点。这不仅可以灵活应对不同工作环境,还能提高标定精度。通过调整圆点数量、间... 点击进入详情页
本回答由东莞大凡提供
海语天风001
高赞答主

2013-07-26 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:8329万
展开全部
1、
证明:
∵矩形ABCD
∴AB∥CD
∴∠DCA=∠CAB
∵∠EDC=∠CAB
∴∠EDC=∠DCA
∴AC∥DE
2、平行四边形BCEF
证明:
∵BF⊥AC
∴∠BFC=∠AFB=90
∵∠DEC=90,AC∥DE
∴∠ACE=180-∠DEC=90
∴∠ACE=∠BFC
∴BF∥CE
∵AB=CD,∠EDC=∠CAB,∠DEC=∠AFB=90
∴△ABF≌△DCE (AAS)
∴BF=CE
∴平行四边形BCEF

数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式