偏导数公式及习题
3个回答
2013-07-27
展开全部
偏导数就是多元函数的导数,你要公式和习题么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-27
展开全部
求隐函数的二阶偏导分两部
(1)在方程两边先对X求一阶偏导得出Z关于X的一阶偏导,然后再解出Z关于X的一阶偏导。
(2)在在原来求过一阶偏导的方程两边对X再求一次偏导。此方程当中一定既含有X的一阶偏导,也含有二阶偏导。最后把(1)中解得的一阶偏导代入其中,就能得出只含有二阶偏导的方程。解出即可。。
(1)在方程两边先对X求一阶偏导得出Z关于X的一阶偏导,然后再解出Z关于X的一阶偏导。
(2)在在原来求过一阶偏导的方程两边对X再求一次偏导。此方程当中一定既含有X的一阶偏导,也含有二阶偏导。最后把(1)中解得的一阶偏导代入其中,就能得出只含有二阶偏导的方程。解出即可。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-12-15
展开全部
偏导数的定义
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数
z=f(x,y)有增量(称为对x的偏增量)
△xz=f(x0+△x)-f(x0,y0).
如果△xz与△x之比当△x→0时的极限
存在,
那末此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数。
记作:f'x(x0,y0)或
关于对x的偏导数的问题
函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,把x固定在x0,让y有增量△y,如果极限
存在,
那末此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数.
记作f'y(x0,y0)或
偏导数的求法
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,
我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,
那末称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,
称为f(x,y)对x(对y)的偏导函数。简称偏导数。
例题:求z=x2siny的偏导数
解答:把y看作常量对x求导数,得
把x看作常量对y求导数,得
注意:二元函数偏导数的定义和求法可以推广到三元和三元以上函数。
例题:求的偏导数。
解答:我们根据二元函数的偏导数的求法来做。
把y和z看成常量对x求导,得.
把x和z看成常量对y求导,得.
把x和y看成常量对z求导,得.
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数
z=f(x,y)有增量(称为对x的偏增量)
△xz=f(x0+△x)-f(x0,y0).
如果△xz与△x之比当△x→0时的极限
存在,
那末此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数。
记作:f'x(x0,y0)或
关于对x的偏导数的问题
函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,把x固定在x0,让y有增量△y,如果极限
存在,
那末此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数.
记作f'y(x0,y0)或
偏导数的求法
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,
我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,
那末称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,
称为f(x,y)对x(对y)的偏导函数。简称偏导数。
例题:求z=x2siny的偏导数
解答:把y看作常量对x求导数,得
把x看作常量对y求导数,得
注意:二元函数偏导数的定义和求法可以推广到三元和三元以上函数。
例题:求的偏导数。
解答:我们根据二元函数的偏导数的求法来做。
把y和z看成常量对x求导,得.
把x和z看成常量对y求导,得.
把x和y看成常量对z求导,得.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询