已知向量a=(sinx,根号3cosx),向量b=(cosx,cosx),求函数f(x)=向量a•向量b,
展开全部
f(x)=a.b=sinxcosx+√3cosx^2=1/2sin2x+√3(cos2x+1)/2=sin(2x+π/3)+√3/2
(1)递增区间:-π/2+2kπ<=2x+π/3<=π/2+2kπ,解得-5π/12+kπ<=x<=π/12+kπ(k属于Z)
区间【-5π/12+kπ,π/12+kπ】(k属于Z)
(2)a⊥b,即f(x)=0,所以sin(2x+π/3)+√3/2=0
得2x+π/3=4π/3+2kπ,2x+π/3=5π/3+2kπ,解得x=π/2+kπ,x=2π/3+kπ,
解集{x|x=π/2+kπ,x=2π/3+kπ,(k属于Z)}
(1)递增区间:-π/2+2kπ<=2x+π/3<=π/2+2kπ,解得-5π/12+kπ<=x<=π/12+kπ(k属于Z)
区间【-5π/12+kπ,π/12+kπ】(k属于Z)
(2)a⊥b,即f(x)=0,所以sin(2x+π/3)+√3/2=0
得2x+π/3=4π/3+2kπ,2x+π/3=5π/3+2kπ,解得x=π/2+kπ,x=2π/3+kπ,
解集{x|x=π/2+kπ,x=2π/3+kπ,(k属于Z)}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询