曲线x∧2-2xy-3y∧2=1 的点到坐标原点的距离的最小值
此方程的确是中心在原点的双曲线(用-x, -y分别取代x, y,方程不变)。所以进行坐标系旋转,将方程变为标准形式,其余就很简单。
将坐标系绕原点逆时针旋转θ,则新旧坐标的关系是:
x = x'cosθ + y'sinθ
y = y'cosθ - x'sinθ
代入x² - 2xy - 3y² = 1并整理:
x'²(cos²θ - 3sin²θ + 2sinθcosθ) -2y'²(3cos²θ - sin²θ + 2sinθcosθ) + x'y'(8sinθcosθ + 2sin²θ - 2cos²θ) =1
然后取x'y'的系数= 8sinθcosθ + 2sin²θ - 2cos²θ = 2(2sin2θ - cos2θ) = 0
2sin2θ - cos2θ = 0
tan2θ = 1/2, 0 < 2θ < π/2
sin2θ/√(1 - sin²2θ) = 1/2
sin2θ = 1/√5, cos2θ = 2/√5
x'²的系数cos²θ - 3sin²θ + 2sinθcosθ = 2cos2θ - 1 + sin2θ = 4/√5 - 1 + 1/√5 = √5 - 1
y'²的系数3²θ - sin²θ + 2sinθcosθ = 2cos2θ + 1 + sin2θ = 4/√5 + 1 + 1/√5 = √5 + 1
双曲线: (√5 - 1)x'² - (√5 - 1)y'² = 1
a² = 1/(√5 - 1) = (√5 + 1)/4
到坐标原点的距离的最小值 = a = (1/2)√(√5 + 1)
图中没画新的坐标系,而是在旧坐标系画了新双曲线。
能不能用高中知识解答下, 为什么要取X'Y'的系数为0 把它变成双曲线?
如果我用十字交叉 化简为(X+Y)(X-3Y)=1 接下来怎么做?
方法很简单,一看马上就知道是坐标系旋转(消去xy),但过程化时间。我开始不小心, 做的时候搞错了8sinθcosθ + 2sin²θ - 2cos²θ中的一个系数,纠正后很快就得出最后结果(要对三角函数比较熟; 还有,坐标系旋转公式是查的)。然后再画图验证一下。