函数f(x)=x^3-3ax-1(a≠0),若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,

求m的取值范围。参考答案:∵f(x)在x=-1处取得极值∴f’(-1)=3*(-1)^2-3a=0∴a=1∴f(x)=x^3-3x-1,f’(x)=3x^2-3由f’(x... 求m的取值范围。
参考答案:∵f(x)在x=-1处取得极值
∴f’(-1)=3*(-1)^2-3a=0
∴a=1
∴f(x)=x^3-3x-1,f’(x)=3x^2-3
由f’(x)=0,解得x1=-1,x2=1
由f(x)的单调性,可知f(x)在x=-1处取得极大值f(-1)=1
在x=1处取得极小值f(1)=-3
∵直线y=m与函数y=f(x)的图像有三个不同交点
又f(-3)=-19<-3,f(3)=17<1
结合f(x)的单调性,可知m的取值范围是(-3,1)

为什么最后要算f(-3)与f(3)?
展开
泪笑2998
2013-08-14 · TA获得超过4.8万个赞
知道大有可为答主
回答量:7787
采纳率:83%
帮助的人:4044万
展开全部
直线y=m与函数y=f(x)的图像有三个不同交点
因为f(x)在(-无穷,-1)和(1,+无穷)单调递增,(-1,1)单调递减
要想m的取值范围就在极小值和极大值之间
就要保证最小值小于极小值,最大值大于极大值(可以通过图像了解)
故只要在(-无穷,-1)和(1,+无穷)分别取一点能满足一个小于极小值,一个大于极大值就行
所以-3,3只是取得两个满足需要的点

明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式