已知函数f(x)=loga(a^x-1),(a>0,且a不等于1)
已知函数f(x)=loga(a^x-1),(a>0,且a不等于1)。1.求f(x)的定义域,2.f(x)的单调性3.f(2x)=f^-1(x)...
已知函数f(x)=loga(a^x-1),(a>0,且a不等于1)。
1.求f(x)的定义域,
2.f(x)的单调性
3.f(2x)=f^-1(x) 展开
1.求f(x)的定义域,
2.f(x)的单调性
3.f(2x)=f^-1(x) 展开
1个回答
展开全部
函数f(x)=loga(a^x-1),(a>0,且a不等于1)。
(1)函数有意义需真数大于0
即a^x-1>0 ,a^x>1
当a>1时,得x>0,函数定义域为(0,+∞)
当0<a<1时,得x<0函数定义域为(-∞,0)
(2)
若a>1,
真数t=a^x-1为增函数,又y=logat为增函数
所以函数f(x)在(0,+∞)上为增函数
若0<a<1
真数t=a^x-1为减函数,又y=logat为减函数
所以函数f(x)在(-∞,0)上为增函数
总之,f(x)在相应的定义域内是增函数
(3)
y=loga(a^x-1)
a^y=a^x-1
∴a^x=a^y+1
∴x=loga(a^y+1)
∴f^(-1)(x)=loga(a^x+1)
那么f(2x)=f^(-1)(x)
即loga(a^(2x)-1)=loga(a^x+1)
∴a^(2x)-a^x-2=0
∴a^x=2或a^x=-1(舍去)
∴x=loga2
(1)函数有意义需真数大于0
即a^x-1>0 ,a^x>1
当a>1时,得x>0,函数定义域为(0,+∞)
当0<a<1时,得x<0函数定义域为(-∞,0)
(2)
若a>1,
真数t=a^x-1为增函数,又y=logat为增函数
所以函数f(x)在(0,+∞)上为增函数
若0<a<1
真数t=a^x-1为减函数,又y=logat为减函数
所以函数f(x)在(-∞,0)上为增函数
总之,f(x)在相应的定义域内是增函数
(3)
y=loga(a^x-1)
a^y=a^x-1
∴a^x=a^y+1
∴x=loga(a^y+1)
∴f^(-1)(x)=loga(a^x+1)
那么f(2x)=f^(-1)(x)
即loga(a^(2x)-1)=loga(a^x+1)
∴a^(2x)-a^x-2=0
∴a^x=2或a^x=-1(舍去)
∴x=loga2
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询