已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在A

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得... 已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为______;(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由. 展开
 我来答
黎约践踏GKOIRM
推荐于2017-12-16 · TA获得超过454个赞
知道答主
回答量:193
采纳率:50%
帮助的人:64.8万
展开全部
(1)∵∠ABC=∠ADE=90°,
∴ED∥BC,
∴∠DEM=∠MCB,
在△EMD和△CMN中
∠DEM=∠NCM
EM=CM
∠EMD=∠NMC

∴△EMD≌△CMN(ASA),
∴CN=DE=DA,MN=MD,
∵BA=BC,
∴BD=BN,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,∠DBM=
1
2
∠DBN=45°=∠BDM,
∴△BMD为等腰直角三角形.
∴BD=
2
BM,

(2)结论成立.
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,
可证得△MDE≌△MFC,
∴DM=FM,DE=FC,
∴AD=ED=FC,
作AN⊥EC于点N,
由已知∠ADE=90°,∠ABC=90°,
可证得∠DEN=∠DAN,∠NAB=∠BCM,
∵CF∥ED,
∴∠DEN=∠FCM,
∴∠BCF=∠BCM+∠FCM=∠NAB+∠DEN=∠NAB+∠DAN=∠BAD,
∴△BCF≌△BAD,
∴BF=BD,∠DBA=∠CBF,
∴∠DBF=∠DBA+∠ABF=∠CBF+∠ABF=∠ABC=90°,
∴△DBF是等腰直角三角形,
∵点M是DF的中点,
则△BMD是等腰直角三角形,
∴BD=
2
BM.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式