已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上一点,且2F1F2=PF1+PF2
P在第三象限,且∠PF1F2为120°,求∠F1PF2的正切值。老师好像是用余弦定理解得,可以提供一下解法吗?...
P在第三象限,且∠PF1F2为120°,求∠F1PF2的正切值。
老师好像是用余弦定理解得,可以提供一下解法吗? 展开
老师好像是用余弦定理解得,可以提供一下解法吗? 展开
1个回答
2013-08-24 · 知道合伙人教育行家
关注
展开全部
由 2F1F2=PF1+PF2 得 4c=2a ,
由于 c=1 ,因此得 a=2 ,a^2=4 ,b^2=a^2-c^2=3 ,
那么椭圆方程为 x^2/4+y^2/3=1 ,
由于 P 在第三象限,且 ∠PF1F2=120° ,
所以直线 PF1 的方程为 y=tan60°*(x+1)=√3(x+1) ,
两方程联立可得 x^2/4+(x+1)^2=1 ,
化简得 5x^2+8x=0 ,
解得 x1= -8/5 ,x2=0 ,
代入 PF1 方程可得 P 坐标为(-8/5,-3√3/5),
因此 kPF1=√3,kPF2=(0+3√3/5) / (1+8/5)=3√3/13 ,
因此 tan∠F1PF2=(kPF1-kPF2)/(1+kPF1*kPF2)
=(√3-3√3/13) / (1+9/13)
=5√3/11 。
由于 c=1 ,因此得 a=2 ,a^2=4 ,b^2=a^2-c^2=3 ,
那么椭圆方程为 x^2/4+y^2/3=1 ,
由于 P 在第三象限,且 ∠PF1F2=120° ,
所以直线 PF1 的方程为 y=tan60°*(x+1)=√3(x+1) ,
两方程联立可得 x^2/4+(x+1)^2=1 ,
化简得 5x^2+8x=0 ,
解得 x1= -8/5 ,x2=0 ,
代入 PF1 方程可得 P 坐标为(-8/5,-3√3/5),
因此 kPF1=√3,kPF2=(0+3√3/5) / (1+8/5)=3√3/13 ,
因此 tan∠F1PF2=(kPF1-kPF2)/(1+kPF1*kPF2)
=(√3-3√3/13) / (1+9/13)
=5√3/11 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询