在三角形ABC中,三条内角平分线AD,BE,CF相交于点G,GH垂直于BC于H点,求证:角BGD=角HGC。
2个回答
展开全部
证明:∵∠AEG=∠EBC+∠ACB= 1/2∠ABC+∠ACB,
∴∠AGE=180°-(∠DAC+∠AEG)
=180°-[1/2∠BAC+1/2∠ABC+∠ACB]
=180°-[1/2(∠BAC+∠ABC)+∠ACB]
=180°-[1/2 (180°-∠ACB)+∠ACB]
=180°-[90°+1/2∠ACB]
=90°-1/2∠ACB,
∴∠BGD=∠AGH=90°-1/2∠ACB,
又∵在直角△GCH中,∠CGH=90°-∠GCD=90°-1/2 ∠ACB,
∴∠BGD=∠CGH.
好久没写了,希望采纳
∴∠AGE=180°-(∠DAC+∠AEG)
=180°-[1/2∠BAC+1/2∠ABC+∠ACB]
=180°-[1/2(∠BAC+∠ABC)+∠ACB]
=180°-[1/2 (180°-∠ACB)+∠ACB]
=180°-[90°+1/2∠ACB]
=90°-1/2∠ACB,
∴∠BGD=∠AGH=90°-1/2∠ACB,
又∵在直角△GCH中,∠CGH=90°-∠GCD=90°-1/2 ∠ACB,
∴∠BGD=∠CGH.
好久没写了,希望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询