高中数学选修的双曲线方程解答技巧
本人高二,学到数学选修教材了,椭圆,双曲线,抛物线啥的感觉学得不明白,定义啥的感觉乱糟的,请专业高手给我些建议,指点些技巧,告诉些方法啥的,谢谢了...
本人高二,学到数学选修教材了,椭圆,双曲线,抛物线啥的感觉学得不明白,定义啥的感觉乱糟的,请专业高手给我些建议,指点些技巧,告诉些方法啥的,谢谢了
展开
2013-09-22
展开全部
双曲线的第一定义 数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离之差的绝对值始终为一定值2a(2a小于F1和F2之间的距离即2a<2c)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的左,右焦点(focus)。两焦点的距离叫焦距,长度为2c。其中2a在坐标轴上的端点叫做顶点,c^2=a^2+b^2 (a=实轴,b=虚轴)双曲线的第二定义 1.文字语言定义 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。2.集合语言定义 设 双曲线上有一动点M,定点F,点M到定直线距离为d, 这时称集合{M| |MF|/d=e,e>1}表示的点集是双曲线. 注意:定点F要在定直线外 且 比值大于1. </B>3.标准方程 设 动点M(x,y),定点F(c,0),点M到定直线l:x=a^2/c的距离为d, 则由 |MF|/d=e>1. 推导出的双曲线的标准方程为 (x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2. 这是中心在原点,焦点在x轴上的双曲线标准方程. 而中心在原点,焦点在y轴上的双曲线标准方程为: (y^2/a^2-x^2/b^2)=1 同样的:其中a>0,b>0,c^2=a^2+b^2.·双曲线的简单几何性质 1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)。 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且∣AA'│=2a. B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b. 4、渐近线: </B>焦点在x轴:y=±(b/a)x. 焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与X轴夹角(极坐标法) 令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。θ=arccos(1/e) 令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e 令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e 这两个x是双曲线定点的横坐标。 求出他们的中点的横坐标(双曲线中心横坐标) x=【(ep/1-e)+(-ep/1+e)】/2 (注意化简一下) 直线ρcosθ=【(ep/1-e)+(-ep/1+e)】/2 是双曲线一条对称轴,注意是不与曲线相交的对称轴。 将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’ 则θ’=θ-【PI/2-arccos(1/e)】 则θ=θ’+【PI/2-arccos(1/e)】 带入上式: ρcos{θ’+【PI/2-arccos(1/e)】}=【(ep/1-e)+(-ep/1+e)】/2 即:ρsin【arccos(1/e)-θ’】=【(ep/1-e)+(-ep/1+e)】/2 现在可以用θ取代式中的θ’了 得到方程:ρsin【arccos(1/e)-θ】=【(ep/1-e)+(-ep/1+e)】/2 5、离心率: 第一定义: e=c/a 且e∈(1,+∞). 第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e. d点(│PF│)/d线(点P到定直线(相应准线)的距离)=e 6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离) 右焦半径:r=│ex-a│ 左焦半径:r=│ex+a│ 7、等轴双曲线 一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2 这时渐近线方程为:y=±x(无论焦点在x轴还是y轴) 8、共轭双曲线 双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。 几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1 特点:(1)共渐近线 (2)焦距相等 (3)两双曲线的离心率平方后的倒数相加等于1 9、准线: 焦点在x轴上:x=±a^2/c 焦点在y轴上:y=±a^2/c 10、通径长:(圆锥曲线(除圆外)中,过焦点并垂直于轴的弦) d=2b^2/a 11、过焦点的弦长公式: d=2pe/(1-e^2cos^2θ) 或 2p/sin^2θ [p为焦点到准线距离,θ为弦与X轴夹角] 12、弦长公式: d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下: 由 直线的斜率公式:k = (y1 - y2) / (x1 - x2) 得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k 分别代入两点间的距离公式:|AB| = √[(x1 - x2)^2; + (y1 - y2)^2; ] 稍加整理即得: |AB| = |x1 - x2|√(1 + k^2;) 或 |AB| = |y1 - y2|√(1 + 1/k^2;) 椭圆的第一定义 平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|)的动点P的轨迹叫做椭圆。 即:│PF│+│PF'│=2a 其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。椭圆的第二定义 平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c或者y=±a^2/c)。 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况.公式椭圆的面积公式 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式 椭圆周长没有公式,有积分式或无限项展开式。 椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如 L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL 椭圆的准线方程 x=±a^2/C 椭圆的离心率公式 e=c/a(e<1,因为2a>2c) 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c 椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex 椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值= 2b^2/a 点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1 点在圆内: x0^2/a^2+y0^2/b^2<1 点在圆上: x0^2/a^2+y0^2/b^2=1 点在圆外: x0^2/a^2+y0^2/b^2>1 直线与椭圆位置关系 y=kx+m ① x^2/a^2+y^2/b^2=1 ② 由①②可推出x^2/a^2+(kx+m)^2/b^2=1 相切△=0 相离△<0无交点 相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2) |AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a椭圆的斜率公式 过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为 -(b^2)X/(a^2)y 抛物线定义 平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。 定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。标准方程 抛物线的标准方程有四个: 右开口抛物线:y^2=2px 左开口抛物线:y^2=—2px 上开口抛物线:x^2=2py 下开口抛物线:x^2=—2py p为焦准距(p>0) 在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x=—p/2; 在抛物线y^2=—2px 中,焦点是(—p/2,0),准线l的方程是x=p/2; 在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y=—p/2; 在抛物线x^2=—2py中,焦点是(0,—p/2),准线l的方程是y=p/2;编辑本段相关参数 (对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦 定义域(X≥0) 值域(Y∈R)面积和弧长公式 抛物线面积 Area=2ab/3 弧长 Arc length ABC =√(b^2+16a^2 )/2+b^2/8a ln((4a+√(b^2+16a^2 ))/b) 抛物线:y = ax^2 + bx + c (a≠0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2016-05-19 · 知道合伙人互联网行家
关注
展开全部
明确一下就可:双曲线的第一定义 数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离之差的绝对值始终为一定值2a(2a小于F1和F2之间的距离即2a<2c)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的左,右焦点(focus)。两焦点的距离叫焦距,长度为2c。其中2a在坐标轴上的端点叫做顶点,c^2=a^2+b^2 (a=实轴,b=虚轴)
双曲线的第二定义
1.文字语言定义 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
2.集合语言定义 设 双曲线上有一动点M,定点F,点M到定直线距离为d, 这时称集合{M| |MF|/d=e,e>1}表示的点集是双曲线. 注意:定点F要在定直线外 且 比值大于1. </B>3.标准方程 设 动点M(x,y),定点F(c,0),点M到定直线l:x=a^2/c的距离为d, 则由 |MF|/d=e>1. 推导出的双曲线的标准方程为 (x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2. 这是中心在原点,焦点在x轴上的双曲线标准方程. 而中心在原点,焦点在y轴上的双曲线标准方程为: (y^2/a^2-x^2/b^2)=1 同样的:其中a>0,b>0,c^2=a^2+b^2.·双曲线的简单几何性质 1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)。 2、对称性:关于坐标轴和原点对称。
3、顶点:A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且∣AA'│=2a. B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.
4、渐近线: </B>焦点在x轴:y=±(b/a)x. 焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与X轴夹角(极坐标法) 令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。θ=arccos(1/e) 令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e 令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e 这两个x是双曲线定点的横坐标。 求出他们的中点的横坐标(双曲线中心横坐标) x=【(ep/1-e)+(-ep/1+e)】/2 (注意化简一下) 直线ρcosθ=【(ep/1-e)+(-ep/1+e)】/2 是双曲线一条对称轴,注意是不与曲线相交的对称轴。 将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’ 则θ’=θ-【PI/2-arccos(1/e)】 则θ=θ’+【PI/2-arccos(1/e)】 带入上式: ρcos{θ’+【PI/2-arccos(1/e)】}=【(ep/1-e)+(-ep/1+e)】/2 即:ρsin【arccos(1/e)-θ’】=【(ep/1-e)+(-ep/1+e)】/2 现在可以用θ取代式中的θ’了 得到方程:ρsin【arccos(1/e)-θ】=【(ep/1-e)+(-ep/1+e)】/2
5、离心率: 第一定义: e=c/a 且e∈(1,+∞). 第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e. d点(│PF│)/d线(点P到定直线(相应准线)的距离)=e
6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离) 右焦半径:r=│ex-a│ 左焦半径:r=│ex+a│
7、等轴双曲线 一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2 这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)
8、共轭双曲线 双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。 几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1 特点:(1)共渐近线 (2)焦距相等 (3)两双曲线的离心率平方后的倒数相加等于1
9、准线: 焦点在x轴上:x=±a^2/c 焦点在y轴上:y=±a^2/c
10、通径长:(圆锥曲线(除圆外)中,过焦点并垂直于轴的弦) d=2b^2/a 11、过焦点的弦长公式: d=2pe/(1-e^2cos^2θ) 或 2p/sin^2θ [p为焦点到准线距离,θ为弦与X轴夹角]
12、弦长公式: d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下: 由 直线的斜率公式:k = (y1 - y2) / (x1 - x2) 得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k 分别代入两点间的距离公式:|AB| = √[(x1 - x2)^2; + (y1 - y2)^2; ] 稍加整理即得: |AB| = |x1 - x2|√(1 + k^2;) 或 |AB| = |y1 - y2|√(1 + 1/k^2;) 椭圆的第一定义 平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|)的动点P的轨迹叫做椭圆。 即:│PF│+│PF'│=2a 其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。椭圆的第二定义 平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c或者y=±a^2/c)。 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况.公式椭圆的面积公式 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式 椭圆周长没有公式,有积分式或无限项展开式。 椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如 L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL 椭圆的准线方程 x=±a^2/C 椭圆的离心率公式 e=c/a(e<1,因为2a>2c) 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c 椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex 椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值= 2b^2/a 点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1 点在圆内: x0^2/a^2+y0^2/b^2<1 点在圆上: x0^2/a^2+y0^2/b^2=1 点在圆外: x0^2/a^2+y0^2/b^2>1 直线与椭圆位置关系 y=kx+m ① x^2/a^2+y^2/b^2=1 ② 由①②可推出x^2/a^2+(kx+m)^2/b^2=1 相切△=0 相离△<0无交点 相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2) |AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a椭圆的斜率公式 过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为 -(b^2)X/(a^2)y 抛物线定义 平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。 定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。标准方程 抛物线的标准方程有四个: 右开口抛物线:y^2=2px 左开口抛物线:y^2=—2px 上开口抛物线:x^2=2py 下开口抛物线:x^2=—2py p为焦准距(p>0) 在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x=—p/2; 在抛物线y^2=—2px 中,焦点是(—p/2,0),准线l的方程是x=p/2; 在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y=—p/2; 在抛物线x^2=—2py中,焦点是(0,—p/2),准线l的方程是y=p/2;编辑本段相关参数 (对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦 定义域(X≥0) 值域(Y∈R)面积和弧长公式 抛物线面积 Area=2ab/3 弧长 Arc length ABC =√(b^2+16a^2 )/2+b^2/8a ln((4a+√(b^2+16a^2 ))/b) 抛物线:y = ax^2 + bx + c (a≠0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
双曲线的第二定义
1.文字语言定义 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
2.集合语言定义 设 双曲线上有一动点M,定点F,点M到定直线距离为d, 这时称集合{M| |MF|/d=e,e>1}表示的点集是双曲线. 注意:定点F要在定直线外 且 比值大于1. </B>3.标准方程 设 动点M(x,y),定点F(c,0),点M到定直线l:x=a^2/c的距离为d, 则由 |MF|/d=e>1. 推导出的双曲线的标准方程为 (x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2. 这是中心在原点,焦点在x轴上的双曲线标准方程. 而中心在原点,焦点在y轴上的双曲线标准方程为: (y^2/a^2-x^2/b^2)=1 同样的:其中a>0,b>0,c^2=a^2+b^2.·双曲线的简单几何性质 1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)。 2、对称性:关于坐标轴和原点对称。
3、顶点:A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且∣AA'│=2a. B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.
4、渐近线: </B>焦点在x轴:y=±(b/a)x. 焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与X轴夹角(极坐标法) 令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。θ=arccos(1/e) 令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e 令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e 这两个x是双曲线定点的横坐标。 求出他们的中点的横坐标(双曲线中心横坐标) x=【(ep/1-e)+(-ep/1+e)】/2 (注意化简一下) 直线ρcosθ=【(ep/1-e)+(-ep/1+e)】/2 是双曲线一条对称轴,注意是不与曲线相交的对称轴。 将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’ 则θ’=θ-【PI/2-arccos(1/e)】 则θ=θ’+【PI/2-arccos(1/e)】 带入上式: ρcos{θ’+【PI/2-arccos(1/e)】}=【(ep/1-e)+(-ep/1+e)】/2 即:ρsin【arccos(1/e)-θ’】=【(ep/1-e)+(-ep/1+e)】/2 现在可以用θ取代式中的θ’了 得到方程:ρsin【arccos(1/e)-θ】=【(ep/1-e)+(-ep/1+e)】/2
5、离心率: 第一定义: e=c/a 且e∈(1,+∞). 第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e. d点(│PF│)/d线(点P到定直线(相应准线)的距离)=e
6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离) 右焦半径:r=│ex-a│ 左焦半径:r=│ex+a│
7、等轴双曲线 一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2 这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)
8、共轭双曲线 双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。 几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1 特点:(1)共渐近线 (2)焦距相等 (3)两双曲线的离心率平方后的倒数相加等于1
9、准线: 焦点在x轴上:x=±a^2/c 焦点在y轴上:y=±a^2/c
10、通径长:(圆锥曲线(除圆外)中,过焦点并垂直于轴的弦) d=2b^2/a 11、过焦点的弦长公式: d=2pe/(1-e^2cos^2θ) 或 2p/sin^2θ [p为焦点到准线距离,θ为弦与X轴夹角]
12、弦长公式: d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下: 由 直线的斜率公式:k = (y1 - y2) / (x1 - x2) 得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k 分别代入两点间的距离公式:|AB| = √[(x1 - x2)^2; + (y1 - y2)^2; ] 稍加整理即得: |AB| = |x1 - x2|√(1 + k^2;) 或 |AB| = |y1 - y2|√(1 + 1/k^2;) 椭圆的第一定义 平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|)的动点P的轨迹叫做椭圆。 即:│PF│+│PF'│=2a 其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。椭圆的第二定义 平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c或者y=±a^2/c)。 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况.公式椭圆的面积公式 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式 椭圆周长没有公式,有积分式或无限项展开式。 椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如 L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL 椭圆的准线方程 x=±a^2/C 椭圆的离心率公式 e=c/a(e<1,因为2a>2c) 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c 椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex 椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值= 2b^2/a 点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1 点在圆内: x0^2/a^2+y0^2/b^2<1 点在圆上: x0^2/a^2+y0^2/b^2=1 点在圆外: x0^2/a^2+y0^2/b^2>1 直线与椭圆位置关系 y=kx+m ① x^2/a^2+y^2/b^2=1 ② 由①②可推出x^2/a^2+(kx+m)^2/b^2=1 相切△=0 相离△<0无交点 相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2) |AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a椭圆的斜率公式 过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为 -(b^2)X/(a^2)y 抛物线定义 平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。 定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。标准方程 抛物线的标准方程有四个: 右开口抛物线:y^2=2px 左开口抛物线:y^2=—2px 上开口抛物线:x^2=2py 下开口抛物线:x^2=—2py p为焦准距(p>0) 在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x=—p/2; 在抛物线y^2=—2px 中,焦点是(—p/2,0),准线l的方程是x=p/2; 在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y=—p/2; 在抛物线x^2=—2py中,焦点是(0,—p/2),准线l的方程是y=p/2;编辑本段相关参数 (对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦 定义域(X≥0) 值域(Y∈R)面积和弧长公式 抛物线面积 Area=2ab/3 弧长 Arc length ABC =√(b^2+16a^2 )/2+b^2/8a ln((4a+√(b^2+16a^2 ))/b) 抛物线:y = ax^2 + bx + c (a≠0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询