若a+b+c=1,则√(3a+1)+√(3b+1)+√(3c+1)的最大值是多少

feidao2010
2013-09-21 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
换元法,令√(3a+1)=A,√(3b+1)=B,√(3c+1)=C
则A,B,C均非负。
则A²+B²+C²=3(a+b+c)+3=6
又A²+B²+C²≥AB+BC+CA
∴(A+B+C)²=A²+B²+C²+2(AB+BC+CA)≤3(A²+B²+C²)=18
当且仅当A=B=C时等号成立
∴ A+B+C≤3√2
即√(3a+1)+√(3b+1)+√(3c+1)的最大值是3√2
来自:求助得到的回答
匿名用户
2013-09-21
展开全部
过程:设x=√(3a+1),y=√(3b+1),z=√(3c+1),t=x+y+z
a+b+c=1
所以x^2+y^2+z^2=6
x^2+y^2=6-z^2
设m=x+y+z
则x+y=m-z
因为x^2+y^2>=(x+y)^2/2
所以6-z^2>=(m-z)^2/2
所以3z^2-2mz+m^2-12<=0
开口向上的抛物线小于等于0有解则判别式大于等于0
所以4m^2-12(m^2-12)>=0
m<=3√2
所以√(3a+1)+√(3b+1)+√(3c+1)=m<=3√2
即√(3a+1)+√(3b+1)+√(3c+1)的最大值=3√2
追问
你这是复制来的吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式