设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.(Ⅰ)求曲线y=f(
设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(...
设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e-x.求函数g(x)的极值.
展开
1个回答
展开全部
(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=-3
令x=2,得f'(2)=12+4a+b=-b,因此12+4a+b=-b,解得a=-
,因此f(x)=x3-
x2-3x+1
∴f(1)=-
,
又∵f'(1)=2×(-
)=-3,
故曲线在点(1,f(1))处的切线方程为y-(-
)=-3(x-1),即6x+2y-1=0.
(II)由(I)知g(x)=(3x2-3x-3)e-x
从而有g'(x)=(-3x2+9x)e-x
令g'(x)=0,则x=0或x=3
∵当x∈(-∞,0)时,g'(x)<0,
当x∈(0,3)时,g'(x)>0,
当x∈(3,+∞)时,g'(x)<0,
∴g(x)=(3x2-3x-3)e-x在x=0时取极小值g(0)=-3,在x=3时取极大值g(3)=15e-3
令x=2,得f'(2)=12+4a+b=-b,因此12+4a+b=-b,解得a=-
3 |
2 |
3 |
2 |
∴f(1)=-
5 |
2 |
又∵f'(1)=2×(-
3 |
2 |
故曲线在点(1,f(1))处的切线方程为y-(-
5 |
2 |
(II)由(I)知g(x)=(3x2-3x-3)e-x
从而有g'(x)=(-3x2+9x)e-x
令g'(x)=0,则x=0或x=3
∵当x∈(-∞,0)时,g'(x)<0,
当x∈(0,3)时,g'(x)>0,
当x∈(3,+∞)时,g'(x)<0,
∴g(x)=(3x2-3x-3)e-x在x=0时取极小值g(0)=-3,在x=3时取极大值g(3)=15e-3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询