(2012?广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上

(2012?广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP... (2012?广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=25,sin∠BCP=55,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长. 展开
 我来答
帅哈狂幻娆3422
推荐于2016-12-01 · 超过54用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:149万
展开全部
(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°
∴2∠BCP+2∠BCA=180°,
∴∠BCP+∠BCA=90°,
又C点在直径上,
∴直线CP是⊙O的切线.

(2)如右图,作BD⊥AC于点D,
∵PC⊥AC
∴BD∥PC
∴∠PCB=∠DBC
∵BC=2
5
,sin∠BCP=
5
5

∴sin∠BCP=sin∠DBC=
DC
BC
=
DC
2
5
=
5
5

解得:DC=2,
∴由勾股定理得:BD=4,
∴点B到AC的距离为4.

(3)如右图,连接AN,
∵AC为直径,
∴∠ANC=90°,
∴Rt△ACN中,AC=
CN
cos∠ACN
=
CN
sin∠BCP
=
5
5
5
=5,
又CD=2,
∴AD=AC-CD=5-2=3.
∵BD∥CP,
BD
CP
=
AD
AC

∴CP=
20
3

在Rt△ACP中,AP=
AC2+CP2
=
25
3

AC+CP+AP=5+
20
3
+
25
3
=20,
∴△ACP的周长为20.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式