分段函数fx=(g(x)-cosx)/x x≠0,f(x)=a x=0且g(x)是二阶连续可导函数
分段函数fx=(g(x)-cosx)/xx≠0,f(x)=ax=0且g(x)是二阶连续可导函数,g(0)=1,a=g'(0),求f'(x)...
分段函数fx=(g(x)-cosx)/x x≠0,f(x)=a x=0且g(x)是二阶连续可导函数,g(0)=1,a=g'(0),求f'(x)
展开
展开全部
f(x)
=[ g(x)-cosx]/x ; x≠0
=a ; x=0
g(0) =1
g'(0) =a
lim(x->0) f(x)
=lim(x->0) [ g(x)-cosx]/x (0/0)
=lim(x->0) [ g'(x)+sinx]
=g'(0)
=a
=f(a)
x=a , f(x) 连续
f'(0)
=lim(h->0) [f(h) -f(0) ]/h
=lim(h->0) { [ g(h)-cosh]/h -a }/h
=lim(h->0) [ g(h)-cosh -ah ]/h^2 (0/0)
=lim(h->0) [ g'(h)+sinh -a ]/(2h) (0/0)
=lim(h->0) [ g''(h)+cosh ]/2
=[g''(0)+1]/2
ie
f'(x)
={ x[ g'(x)+sinx] - [g(x)-cosx] }/x^2 ; x≠0
=[g''(0)+1]/2 ; x=0
=[ g(x)-cosx]/x ; x≠0
=a ; x=0
g(0) =1
g'(0) =a
lim(x->0) f(x)
=lim(x->0) [ g(x)-cosx]/x (0/0)
=lim(x->0) [ g'(x)+sinx]
=g'(0)
=a
=f(a)
x=a , f(x) 连续
f'(0)
=lim(h->0) [f(h) -f(0) ]/h
=lim(h->0) { [ g(h)-cosh]/h -a }/h
=lim(h->0) [ g(h)-cosh -ah ]/h^2 (0/0)
=lim(h->0) [ g'(h)+sinh -a ]/(2h) (0/0)
=lim(h->0) [ g''(h)+cosh ]/2
=[g''(0)+1]/2
ie
f'(x)
={ x[ g'(x)+sinx] - [g(x)-cosx] }/x^2 ; x≠0
=[g''(0)+1]/2 ; x=0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询