A是实矩阵且A+A' 正定 证明:|A |>0

 我来答
华源网络
2022-09-02 · TA获得超过5597个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
对于A的任何实特征值λ及相应的特征向量x, 有x'(A+A')x=2λx'x>0, 所以λ>0
而行列式|A|是所有特征值的乘积, 虚特征值必须成对, 所以只要实特征值都是正的就能保证|A|>0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式