已知数列{an}的前n项和为Sn,满足2Sn+3=3an(n∈N*),{bn}是等差数列,且b2=a1b4=a1+4(1)求数列{an},
已知数列{an}的前n项和为Sn,满足2Sn+3=3an(n∈N*),{bn}是等差数列,且b2=a1b4=a1+4(1)求数列{an},{bn}的通项公式;(2)求数列...
已知数列{an}的前n项和为Sn,满足2Sn+3=3an(n∈N*),{bn}是等差数列,且b2=a1b4=a1+4(1)求数列{an},{bn}的通项公式;(2)求数列{anbn}的前n项和Tn.
展开
1个回答
展开全部
(1)n=1时,2S1+3=3a1?a1=3,
n≥2时,2Sn+3=3an,①
2Sn-1+3=3an-1,②
由①-②得2an=3an-3an-1,
∴an=3an-1,
∴数列{an}是首项a1=3,公比为3的等比数列,
∴an=3n(n∈N*),
∴b2=a1=3,b4=a1+4=7,
∴d=2,∴b1=1,
∴bn=2n-1.
(2)anbn=(2n-1)?3n,
则Tn=1×3+3×32+5×33+…+(2n-1)×3n,①
∴3Tn=1×32+3×33+5×34+…+(2n-1)×3n+1,②
由①-②得:-2Tn=1×3+2×32+2×33+…+2×3n-(2n-1)×3n+1
=3+2×
-(2n-1)×3n+1
=3+3n+1-9-(2n-1)×3n+1
=-6-(2n-2)×3n+1,
∴Tn=3+(n-1)×3n+1.
n≥2时,2Sn+3=3an,①
2Sn-1+3=3an-1,②
由①-②得2an=3an-3an-1,
∴an=3an-1,
∴数列{an}是首项a1=3,公比为3的等比数列,
∴an=3n(n∈N*),
∴b2=a1=3,b4=a1+4=7,
∴d=2,∴b1=1,
∴bn=2n-1.
(2)anbn=(2n-1)?3n,
则Tn=1×3+3×32+5×33+…+(2n-1)×3n,①
∴3Tn=1×32+3×33+5×34+…+(2n-1)×3n+1,②
由①-②得:-2Tn=1×3+2×32+2×33+…+2×3n-(2n-1)×3n+1
=3+2×
9×(1?3n?1) |
1?3 |
=3+3n+1-9-(2n-1)×3n+1
=-6-(2n-2)×3n+1,
∴Tn=3+(n-1)×3n+1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询