如图,角ACD是三角形ABC的外角,BE平分角ABC,CE平分角ACD,且BE、CE交点于点E,求 10
如图,角ACD是三角形ABC的外角,BE平分角ABC,CE平分角ACD,且BE、CE交点于点E,求证:角E等于二分之一角A...
如图,角ACD是三角形ABC的外角,BE平分角ABC,CE平分角ACD,且BE、CE交点于点E,求证:角E等于二分之一角A
展开
1个回答
推荐于2019-03-24
展开全部
∠E
= 180° - ∠EBC - ∠BCE
= 180° - ∠ABC / 2 - (∠ACB + ∠ACE)
因为∠ACD = 2∠ACE,角平分线,所以
∠E
= 180° - ∠ABC / 2 - ∠ACB - ∠ACD / 2
又因为∠ACD = ∠A + ∠ABC,三角形外角公式,所以
∠E
= 180° - ∠ABC / 2 - ∠ACB - (∠A + ∠ABC) / 2
= 180° - ∠ABC - ∠ABC - ∠A / 2
= (180° - ∠ABC - ∠ABC) - ∠A / 2
= ∠A - ∠A / 2
= ∠A / 2
= 180° - ∠EBC - ∠BCE
= 180° - ∠ABC / 2 - (∠ACB + ∠ACE)
因为∠ACD = 2∠ACE,角平分线,所以
∠E
= 180° - ∠ABC / 2 - ∠ACB - ∠ACD / 2
又因为∠ACD = ∠A + ∠ABC,三角形外角公式,所以
∠E
= 180° - ∠ABC / 2 - ∠ACB - (∠A + ∠ABC) / 2
= 180° - ∠ABC - ∠ABC - ∠A / 2
= (180° - ∠ABC - ∠ABC) - ∠A / 2
= ∠A - ∠A / 2
= ∠A / 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询