定积分求解旋转体体积,有一个立体,以长半轴为a=10,短半轴为b=5的椭圆为底,而垂直于长轴的截面
定积分求解旋转体体积,有一个立体,以长半轴为a=10,短半轴为b=5的椭圆为底,而垂直于长轴的截面都是等边三角形,求立体体积.正确答案(1000√3)/3.谢谢帮助...
定积分求解旋转体体积,有一个立体,以长半轴为a=10,短半轴为b=5的椭圆为底,而垂直于长轴的截面都是等边三角形,求立体体积.正确答案(1000√3)/3.谢谢帮助
展开
2015-12-15 · 知道合伙人游戏行家
关注
展开全部
设椭圆长轴为x轴,短轴为y轴.则取一小段△x,则与x轴垂直的平面所截得立体的形状应该是一个 底面为等边三角形,且边长是2y,高是△x的三棱柱.
∴△V=(1/2*2y*√3*y)*△x=√3*y^2*△x
季dV=√2*y^2*dx
由图形的对称关系可知所求旋转体在x轴正半轴的体积和在x轴负半轴的体积是相等的
∴总体积为V=2∫√3*y^2*dx(上限为10,下限为0)
又椭圆方程的参数形式为:
x=10cosθ
y=5sinθ
代入体积式子V=2∫√3*y^2*dx=∫√3*(5sinθ)^2d(10cosθ) (此时θ所对应的积分上下限分别是0,π/2)
V=500√3∫(1-cosθ^2)d(cosθ)
解定积分的∫(1-cosθ^2)d(cosθ)=2/3
所以V=(1000√3)/3
若不是很明白可以再探讨.
∴△V=(1/2*2y*√3*y)*△x=√3*y^2*△x
季dV=√2*y^2*dx
由图形的对称关系可知所求旋转体在x轴正半轴的体积和在x轴负半轴的体积是相等的
∴总体积为V=2∫√3*y^2*dx(上限为10,下限为0)
又椭圆方程的参数形式为:
x=10cosθ
y=5sinθ
代入体积式子V=2∫√3*y^2*dx=∫√3*(5sinθ)^2d(10cosθ) (此时θ所对应的积分上下限分别是0,π/2)
V=500√3∫(1-cosθ^2)d(cosθ)
解定积分的∫(1-cosθ^2)d(cosθ)=2/3
所以V=(1000√3)/3
若不是很明白可以再探讨.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询