为什么两个正数的几何平均不小于他们的几何平均?

 我来答
笑九社会小达人
高能答主

2023-07-17 · 专注社会民生知识解答。
笑九社会小达人
采纳数:742 获赞数:53129

向TA提问 私信TA
展开全部

对数的均值不等式是:

a>0,b>0,a≠b,有:

√ab<(a-b)/(lna-lnb)<(a+b)/2。

如果将基本不等式的2除到左边就是(a+b)/2=sqr(ab),左边的部分叫做a,b的算术平均,右边的部分叫做a,b的几何平均于是基本不等式,两个正数的几何平均不小于它们的几何平均。

对数运算

(1)log(a)(MN)=log(a)(M)+log(a)(N)。

(2)log(a)(M/N)=log(a)(M)-log(a)(N)。

(3)log(a)(M^n)=nlog(a)(M)(n∈R)。

(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。

(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式