已知函数f(x)=ax∧2+ln(x+1) 当a=-1/4时,求函数f(x)的单调区间
展开全部
x+1>0 x>-1 a=-1/4 f(x)=-x^2/4+ln(x+1) f'(x)=-x/2+1/(x+1)=-(x+2)(x-1)/2(x+1)=0 x1=-2(舍去) x2=1
-1<x<1 f'(x)>0 x>1 f'(x)<0 (-1,1)为 单调递增区间 (1,+无穷)为单调递减区间
-1<x<1 f'(x)>0 x>1 f'(x)<0 (-1,1)为 单调递增区间 (1,+无穷)为单调递减区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-1<x<1,x<-2单调增
追答
-21单调减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询