1个回答
展开全部
c < lim(n→∞) (a^n+b^n+c^n)^1/n < a
lim(n→0) (a^n+b^n+c^n)^1/n = +∞
---------
解析:
A = (c^n+c^n+c^n)^(1/n) = (3c^n)^(1/n) = c*3^(1/n)
B = (a^n+b^n+c^n)^1/n
C = (a^n+a^n+a^n)^(1/n) = (3a^n)^(1/n) = a*3^(1/n)
所以 A<B<C
当 n→∞ 时,
lim(n→∞) A = lim [c*3^(1/n)] = c
lim(n→∞) C = lim [a*3^(1/n)] = a
因此
c < lim(n→∞) B < a
当 n→0 时,
lim(n→0) A = lim [c*3^(1/n)] = +∞
因为 A<B
所以
lim(n→0) B = +∞
lim(n→0) (a^n+b^n+c^n)^1/n = +∞
---------
解析:
A = (c^n+c^n+c^n)^(1/n) = (3c^n)^(1/n) = c*3^(1/n)
B = (a^n+b^n+c^n)^1/n
C = (a^n+a^n+a^n)^(1/n) = (3a^n)^(1/n) = a*3^(1/n)
所以 A<B<C
当 n→∞ 时,
lim(n→∞) A = lim [c*3^(1/n)] = c
lim(n→∞) C = lim [a*3^(1/n)] = a
因此
c < lim(n→∞) B < a
当 n→0 时,
lim(n→0) A = lim [c*3^(1/n)] = +∞
因为 A<B
所以
lim(n→0) B = +∞
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询