已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌△AEB;(2)求证:PB⊥BE;(3)若PA...
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌△AEB;(2)求证:PB⊥BE;(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.
展开
展开全部
(1)证明:∵四边形ABCD是正方形, ∴BC=AB,(1分) ∵∠CBP=∠ABE,BP=BE, ∴△CBP≌△ABE. (2)证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°, ∴PB⊥BE. (1)、(2)两小题可以一起证明. 证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP(1分) =∠CBP+∠ABP =90°(2分) ∴PB⊥BE.(3分) 以B为旋转中心,把△CBP按顺时针方向旋转90°.(4分) ∵BC=AB,∠CBA=∠PBE=90°,BE=BP.(5分) ∴△CBP与△ABE重合, ∴△CBP≌△ABE.(6分) (3)连接PE, ∵BE=BP,∠PBE=90°, ∴∠BPE=45°,(7分) 设AP为k,则BP=BE=2k, ∴PE 2 =8k 2 ,(8分) ∴PE=2
∵∠BPA=135°,∠BPE=45°, ∴∠APE=90°,(9分) ∴AE=3k, 在直角△APE中:cos∠PAE=
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询