已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x
已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有f(x1)?f(x2)x1?x...
已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有f(x1)?f(x2)x1?x2>0.给出下列命题:①f(3)=0;②直线x=-6是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[-9,-6]上为增函数;④函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为______(把所有正确命题的序号都填上)
展开
1个回答
展开全部
①:对于任意x∈R,都有f (x+6)=f (x)+f (3)成立,令x=-3,则f(-3+6)=f(-3)+f (3),又因为f(x)是R上的偶函数,所以f(3)=0.
②:由(1)知f (x+6)=f (x),所以f(x)的周期为6,
又因为f(x)是R上的偶函数,所以f(x+6)=f(-x),
而f(x)的周期为6,所以f(x+6)=f(-6+x),f(-x)=f(-x-6),
所以:f(-6-x)=f(-6+x),所以直线x=-6是函数y=f(x)的图象的一条对称轴.
③:当x1,x2∈[0,3],且x1≠x2时,都有
>0
所以函数y=f(x)在[0,3]上为增函数,
因为f(x)是R上的偶函数,所以函数y=f(x)在[-3,0]上为减函数
而f(x)的周期为6,所以函数y=f(x)在[-9,-6]上为减函数.
④:f(3)=0,f(x)的周期为6,
所以:f(-9)=f(-3)=f(3)=f(9)=0
函数y=f(x)在[-9,9]上有四个零点.
故答案为:①②④.
②:由(1)知f (x+6)=f (x),所以f(x)的周期为6,
又因为f(x)是R上的偶函数,所以f(x+6)=f(-x),
而f(x)的周期为6,所以f(x+6)=f(-6+x),f(-x)=f(-x-6),
所以:f(-6-x)=f(-6+x),所以直线x=-6是函数y=f(x)的图象的一条对称轴.
③:当x1,x2∈[0,3],且x1≠x2时,都有
f(x1)?f(x2) |
x1?x2 |
所以函数y=f(x)在[0,3]上为增函数,
因为f(x)是R上的偶函数,所以函数y=f(x)在[-3,0]上为减函数
而f(x)的周期为6,所以函数y=f(x)在[-9,-6]上为减函数.
④:f(3)=0,f(x)的周期为6,
所以:f(-9)=f(-3)=f(3)=f(9)=0
函数y=f(x)在[-9,9]上有四个零点.
故答案为:①②④.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询