求lim(x趋向于1)(x+x^2+x^3+.+x^n-n)/(x-1)
求lim(x趋向于1)(x+x^2+x^3+.+x^n-n)/(x-1)
由洛必达法则,
lim(x趋向于1)(x+x^2+x^3+...+x^n-n)/(x-1)
=lim(x趋向于1)(x+x^2+x^3+...+x^n-n)'/(x-1)'
=lim(x趋向于1)(1+2x+3x^2+nx^(n-1)-n)/1
=1+2+3+4+...+n-1
=n(n-1)/2
lim(1+x/2)的(x-1)/x x趋向于0
解: lim(x->0){(1+x/2)^[(x-1)/x]}
=lim(x->0){(1+x/2)^[(2/x)*((x-1)/2)]}
={lim(x->0)[(1+x/2)^(2/x)]}^{lim(x->0)[(x-1)/2]}
=e^[(0-1)/2]
=e^(-1/2)。
lim f(x)=A x趋向于a limf(x^2)=A x趋向于a^2/1
你的题目写的真奇葩 y→a lim f(y)=A 令y=x^2 x→根号a 则y→ (根号a)^2 则lim(y)=A 大概就是这么个意思,毕业了智商负数不好意思
lim((1+x)^5-(1+5x))/(x^2+x^5) x趋向于0
lim((1+x)^5-(1+5x))/(x^2+x^5)
=lim(x^5+5x^4+10x^3+10x^2)/(x^2+x^5)
=lim(10x^2)/(x^2)
=10
lim[(2/x^2-1)-(1/x-1)] x趋向于0
∵[(2/x^2-1)-(1/x-1)]
=[2-(X+1)]/[(X+1)(X-1)]
=-1/(X+1)
∴X→0时,
lim[2/(X^2-1)-1/(X-1)]=-1。
limx趋近于1,x+x^2+x^3+.+x^n除以x-1
x+x^2+...+x^n =x(x^n-1)/(x-1)
lim x(x^n -1)/(x-1)^2 = lim( (x^n-1) + n x^n) / 2(x-1) = lim ((n+1)x^n - 1) /2(x-1) = lim (n+1)nx^(n-1)/2
(洛必塔,上下取导,使用两次)
=(n+1)n/2
lim(x趋向于无穷)(2x-3/2x 1)^x-1
lim (1/x2 - cot2x),x趋向0 = lim (1/x2 - cos2x/sin2x),通分 = lim (sin2x - x2cos2x)/(x2sin2x),分母sin2x等价x2 = lim cos2x(tan2x - x2)/x^4,分子提取cos2x出来并注意lim cos2x = 1 = lim (tanx - x)(tanx + x)/x^4,平方差 = lim (tanx - x)/x3 * lim (tanx + x)/x,第一项用洛必达法则上下求导 = lim (sec2x - 1)/3x2 * ( lim tanx/x + 1),tanx等价x = lim tan2x/3x2 * (1 + 1),恒等式sec2x - 1 = tan2x = lim x2/3x2 * 2,tan2x等价x2 = 2/3
lim(x+x^2+……+x^n-n)/(x-1)
X是趋于1吧?用微积分中的洛必达法则(对分子分母求导后整个式子的极限值与原极限值相等,此题情况是0/0型,符合条件的,具体可以参阅几乎任一本微积分的书,里面都有),答案是(1+n)*n/2
lim(2^x-1)/x x趋向于0 怎么算
由于x趋于0时,分子分母都为0,所以用诺必达法则。
分子分母同时求导得:2^x(ln2)/1,当x趋于0 时,结果为ln2