已知二次函数f(x)=3x^2-2x,数 列{an}的前n项和为Sn, 点(n, Sn)(n∈N*
已知二次函数f(x)=3x^2-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图像上,(1)求数列{an}的通项公式(2)设bn=3...
已知二次函数f(x)=3x^2-2x,数 列{an}的前n项和为Sn, 点(n, Sn)(n∈N*)均在函数y=f(x)的图 像上, (1)求数列{an}的通项 公式 (2)设bn=3/(anan+1) ,Tn是数列{bn}的前n项和,求 使得Tn小于m/20对所有n属于N× 都成立的最小正整数m ,这道题咋做?求解题过程
展开
2个回答
展开全部
sn=3n^2-2n
an=sn-s(n-1)=3n^2-2n-3(n-1)^2+2(n-1)=6n-5
(2)bn=3/(6n-5)(6n+1)=1/2(1/(6n-5)-1/(6n+1))
Tn=1/2(1/1-1/纳唯7+1/7-1/13+1/13-1/19+……洞液培1/(6n-5)-1/(6n+1))=1/2(1-1/(6n+1))
1/2(1-1/(6n+1))<m/20
10(1-1/(6n+1))<m
n>0 1-1/(6n+1)<1 10(1-1/(6n+1))<10
所以埋判m≥10 m最小是10
an=sn-s(n-1)=3n^2-2n-3(n-1)^2+2(n-1)=6n-5
(2)bn=3/(6n-5)(6n+1)=1/2(1/(6n-5)-1/(6n+1))
Tn=1/2(1/1-1/纳唯7+1/7-1/13+1/13-1/19+……洞液培1/(6n-5)-1/(6n+1))=1/2(1-1/(6n+1))
1/2(1-1/(6n+1))<m/20
10(1-1/(6n+1))<m
n>0 1-1/(6n+1)<1 10(1-1/(6n+1))<10
所以埋判m≥10 m最小是10
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询