如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC

如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函... 如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函数解析式;(2)设点M的横坐标为x,写出四边形OCMD的面积S与x的函数关系式,当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)探究:当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S,试求S与a的函数关系式,并画出该函数的图象. 展开
 我来答
安定又和谐灬饼干2876
推荐于2016-03-05 · TA获得超过314个赞
知道答主
回答量:110
采纳率:100%
帮助的人:125万
展开全部
(1)∵OA=OB=4,
∴点A(4,0)B(0,4),
设直线AB的解析式为y=kx+b,
4k+b=0
b=4

解得
k=-1
b=4

所以,直线AB的函数解析式为y=-x+4;

(2)∵MC⊥OA,MD⊥OB,x轴⊥y轴,
∴四边形OCMD是矩形,
∴DM∥OA,
∴△BDM∽△BOA,
BD
OB
=
DM
OA

4-OD
4
=
x
4

解得OD=4-x,
∴S=x(4-x)=-x2+4x,
所以,S与x的函数关系式为:S=-x2+4x(0<x<4),
∵S=-x2+4x=-(x2-4x+4)+4=-(x-2)2+4,
∴当x=2时,S有最大值4,
此时M是AB的中点,
故,点M运动到AB的中点位置时,四边形OCMD的面积有最大值4;

(3)如图,∵直线AB的解析式为y=-x+4,
∴移动过程中正方形被分割出的三角形式等腰直角三角形,
由(2)可得,四边形OCMD为正方形时,4-x=x,
解得x=2,
所以,正方形的面积为:22=4,
①当0<a≤2时,重叠部分的面积=4-
1
2
a2
②当2≤a<4时,重叠部分的面积=
1
2
(4-a)(4-a)=
1
2
(4-a)2
所以,S与a的函数关系式为S=
-
1
2
a
2
+4(0<a≤2)
1
2
(a-4)
2
(2≤a<4)

函数图象如图.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式