如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC
如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函...
如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函数解析式;(2)设点M的横坐标为x,写出四边形OCMD的面积S与x的函数关系式,当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)探究:当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S,试求S与a的函数关系式,并画出该函数的图象.
展开
1个回答
展开全部
(1)∵OA=OB=4,
∴点A(4,0)B(0,4),
设直线AB的解析式为y=kx+b,
则
,
解得
,
所以,直线AB的函数解析式为y=-x+4;
(2)∵MC⊥OA,MD⊥OB,x轴⊥y轴,
∴四边形OCMD是矩形,
∴DM∥OA,
∴△BDM∽△BOA,
∴
=
,
即
=
,
解得OD=4-x,
∴S=x(4-x)=-x2+4x,
所以,S与x的函数关系式为:S=-x2+4x(0<x<4),
∵S=-x2+4x=-(x2-4x+4)+4=-(x-2)2+4,
∴当x=2时,S有最大值4,
此时M是AB的中点,
故,点M运动到AB的中点位置时,四边形OCMD的面积有最大值4;
(3)如图,∵直线AB的解析式为y=-x+4,
∴移动过程中正方形被分割出的三角形式等腰直角三角形,
由(2)可得,四边形OCMD为正方形时,4-x=x,
解得x=2,
所以,正方形的面积为:22=4,
①当0<a≤2时,重叠部分的面积=4-
a2,
②当2≤a<4时,重叠部分的面积=
(4-a)(4-a)=
(4-a)2,
所以,S与a的函数关系式为S=
,
函数图象如图.
∴点A(4,0)B(0,4),
设直线AB的解析式为y=kx+b,
则
|
解得
|
所以,直线AB的函数解析式为y=-x+4;
(2)∵MC⊥OA,MD⊥OB,x轴⊥y轴,
∴四边形OCMD是矩形,
∴DM∥OA,
∴△BDM∽△BOA,
∴
BD |
OB |
DM |
OA |
即
4-OD |
4 |
x |
4 |
解得OD=4-x,
∴S=x(4-x)=-x2+4x,
所以,S与x的函数关系式为:S=-x2+4x(0<x<4),
∵S=-x2+4x=-(x2-4x+4)+4=-(x-2)2+4,
∴当x=2时,S有最大值4,
此时M是AB的中点,
故,点M运动到AB的中点位置时,四边形OCMD的面积有最大值4;
(3)如图,∵直线AB的解析式为y=-x+4,
∴移动过程中正方形被分割出的三角形式等腰直角三角形,
由(2)可得,四边形OCMD为正方形时,4-x=x,
解得x=2,
所以,正方形的面积为:22=4,
①当0<a≤2时,重叠部分的面积=4-
1 |
2 |
②当2≤a<4时,重叠部分的面积=
1 |
2 |
1 |
2 |
所以,S与a的函数关系式为S=
|
函数图象如图.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询