离散数学,集合证明题。
我有两个问题需要大侠们帮助。1.证明它是正确的或是错误的:如果P(A)=P(B),则A=B2.证明它是正确的或是错误的:如果A∩C=B∩C,则A=B急!!!请各位大侠帮忙...
我有两个问题需要大侠们帮助。 1. 证明它是正确的或是错误的:如果 P(A)=P(B),则A=B 2. 证明它是正确的或是错误的:如果 A∩C=B∩C,则A=B 急!!! 请各位大侠帮忙的时候,能够用数学证明,而不是举个例子。。谢谢了。
展开
1个回答
展开全部
1.错误
这里P是一个作用于A=B的映射
如果P是多一对应的(譬如P作为一个常值函数
它把1和-1都映射为0
)
那么就推不出A=B(1和-1显然不相等
)
2.错误
A∩C=B∩C
顾名思义
指的是AC的公共部分和BC的公共部分相同
如果AC不公共的部分和BC不公共的部分不同
那么A还是不等于B
原命题等价于逆否命题
你可以证明逆否命题:
1.“如果
P(A)=P(B),则A=B”
等价于
“若A不等于B,则P(A)不等于P(B)”
显然的
如果P是一个把A
B映成同一个值的映射
那么P(A)=P(B)
也就是说原命题不成立
集合的证明题是属于集合论的范畴
并没有你所谓的“数学证明”我们在这里举例子就是叫反证法
对于证明命题不成立是一种严格的证明方法
已经可以了
这里P是一个作用于A=B的映射
如果P是多一对应的(譬如P作为一个常值函数
它把1和-1都映射为0
)
那么就推不出A=B(1和-1显然不相等
)
2.错误
A∩C=B∩C
顾名思义
指的是AC的公共部分和BC的公共部分相同
如果AC不公共的部分和BC不公共的部分不同
那么A还是不等于B
原命题等价于逆否命题
你可以证明逆否命题:
1.“如果
P(A)=P(B),则A=B”
等价于
“若A不等于B,则P(A)不等于P(B)”
显然的
如果P是一个把A
B映成同一个值的映射
那么P(A)=P(B)
也就是说原命题不成立
集合的证明题是属于集合论的范畴
并没有你所谓的“数学证明”我们在这里举例子就是叫反证法
对于证明命题不成立是一种严格的证明方法
已经可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询