三阶矩阵只有两个特征值能得出什么结论?

 我来答
帐号已注销
2021-11-11 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

结论:n阶矩阵有n个特征值(包括相同的特征值)。

三阶矩阵就一定有3个特征值,因为求特征值的时候,是算|xE-A|=0的根,|xE-A|是个3次多项式,必定有3个根。矩阵的秩就是非零特征值的个数。现在r(A)=1,就是说,3个根中只有1个非零根,那剩下两个必定是0,是这样看出来的。

判断相似矩阵的必要条件:

设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式