求x趋于0时(tanx/x)^(1/x^2)的极限 用罗比达法则,答案是e^1/3,

 我来答
玩车之有理8752
2022-06-14 · TA获得超过911个赞
知道小有建树答主
回答量:135
采纳率:100%
帮助的人:65.3万
展开全部
设Y=(tanx/x)^(1/x^2)同时取对数lnY={ln(tanx/x)}/x^2右边用洛必达法则得:分子:1/sinxcosx—1/x分母2x化成{x/(2sinxcosx)}*{(x-sinxcosx)/x^3}乘式左右再用罗比达法则得(1/2cos2x){(1-cos2x)/3x^2}=(1/2...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式