如何判定积分是否可以对称

 我来答
杨老师秒懂课堂
高能答主

2023-04-05 · 分享生活酸甜苦辣咸,喜怒哀乐。
杨老师秒懂课堂
采纳数:875 获赞数:110708

向TA提问 私信TA
展开全部

当空间区域Ω关于坐标面(如:空间区域Ω关于yoz 坐标面)对称,被积函数关于另一个字母(如:被积函数关于z为奇函数)为奇函数,则三重积分为0。

积分区域关于坐标面对称,被积函数是关于x,y,z的奇偶函数,这是一种,还有一种是对自变量的对称性,当自变量x,y,z任意交换顺序后,积分区域不变,则交换顺序后的积分值也不变,这个也叫轮换对称性。

其实有的时候要看具体的题目,有些表面上看好像不具备对称性,但是通过平移或变量代换后就可以利用对称性的。

直角坐标系法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法。

1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

区域条件:对积分区域Ω无限制。

函数条件:对f(x,y,z)无限制。

2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成。

函数条件:f(x,y)仅为一个变量的函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式