如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动; 30
如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,...
如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.在整个运动过程中,设△PCQ的面积为S平方单位,请写出S与T之间的函数关系式,并写出相应的自变量t的取值范围。(求解题过程)
展开
2个回答
展开全部
(1)7。
(2)点P从B到C的时间是3秒,此时点Q在AB上,则
当时,点P在BC上,点Q在CA上,若△PCQ为等腰三角形,则一定为等腰直角三角形,有:PC=CQ,即3﹣t=2t,解得:t=1。
当时,点P在BC上,点Q在AB上,若△PCQ为等腰三角形,则一定有PQ=PC(如图1),则点Q在PC的中垂线上。
作QH⊥AC,则QH=PC,△AQH∽△ABC,
在Rt△AQH中,AQ=2t﹣4,
则。
∵PC=BC﹣BP=3﹣t,
∴,解得:。
综上所述,在点P从点B到点C的运动过程中,当t=1或时,△PCQ为等腰三角形。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,
则PC=t﹣3,BQ=2t﹣9,即。
同(2)可得:△PCQ中,PC边上的高是:,
∴。
∴当t=5时,s有最大值,此时,P是AC的中点(如图2)。
∵沿直线PD折叠,使点A落在直线PC上,
∴PD一定是AC的中垂线。
∴AP=CP=AC=2,PD=BC=。
∴AQ=14﹣2t=14﹣2×5=4。
如图2,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
则QE=AQ=×4=,EA=AQ=×4=。
∴EP=,CE=。
设FP=x,FO=y,则CF=。
由△CFO∽△CPD得,即,∴。
由△PFO∽△PEQ得,即,∴。解得:。
∴△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
试题分析:(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由B到A的过程中,利用方程即可求得:
在Rt△ABC中,∵∠C=90°,BC=3,AB=5,∴根据勾股定理得AC=4。
则Q从C到B经过的路程是9,需要的时间是4.5秒,此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5。
根据题意得:,解得:t=7。
(2)因为点P从B到C的时间是3秒,此时点Q在AB上,所以分(点P在BC上,点Q在CA上)和(点P在BC上,点Q在AB上)两种情况进行讨论求得t的值。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t﹣3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得s最大时t的值,此时,P是AC的中点,直线PD折叠,使点A落在直线PC上,则PD一定是AC的中垂线。因此,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。应用△CFO∽△CPD和△PFO∽△PEQ得比例式求出OF的长即可求得△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
(2)点P从B到C的时间是3秒,此时点Q在AB上,则
当时,点P在BC上,点Q在CA上,若△PCQ为等腰三角形,则一定为等腰直角三角形,有:PC=CQ,即3﹣t=2t,解得:t=1。
当时,点P在BC上,点Q在AB上,若△PCQ为等腰三角形,则一定有PQ=PC(如图1),则点Q在PC的中垂线上。
作QH⊥AC,则QH=PC,△AQH∽△ABC,
在Rt△AQH中,AQ=2t﹣4,
则。
∵PC=BC﹣BP=3﹣t,
∴,解得:。
综上所述,在点P从点B到点C的运动过程中,当t=1或时,△PCQ为等腰三角形。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,
则PC=t﹣3,BQ=2t﹣9,即。
同(2)可得:△PCQ中,PC边上的高是:,
∴。
∴当t=5时,s有最大值,此时,P是AC的中点(如图2)。
∵沿直线PD折叠,使点A落在直线PC上,
∴PD一定是AC的中垂线。
∴AP=CP=AC=2,PD=BC=。
∴AQ=14﹣2t=14﹣2×5=4。
如图2,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
则QE=AQ=×4=,EA=AQ=×4=。
∴EP=,CE=。
设FP=x,FO=y,则CF=。
由△CFO∽△CPD得,即,∴。
由△PFO∽△PEQ得,即,∴。解得:。
∴△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
试题分析:(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由B到A的过程中,利用方程即可求得:
在Rt△ABC中,∵∠C=90°,BC=3,AB=5,∴根据勾股定理得AC=4。
则Q从C到B经过的路程是9,需要的时间是4.5秒,此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5。
根据题意得:,解得:t=7。
(2)因为点P从B到C的时间是3秒,此时点Q在AB上,所以分(点P在BC上,点Q在CA上)和(点P在BC上,点Q在AB上)两种情况进行讨论求得t的值。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t﹣3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得s最大时t的值,此时,P是AC的中点,直线PD折叠,使点A落在直线PC上,则PD一定是AC的中垂线。因此,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。应用△CFO∽△CPD和△PFO∽△PEQ得比例式求出OF的长即可求得△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
追问
我的第三问是求函数关系式和取值范围,而不是你所说的折叠部分的面积
追答
(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由B到A的过程中,利用方程即可求得;
(2)分Q从C到A的时间是3秒,P从A到C的时间是3秒,则可以分当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,和当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC两种情况进行讨论求得t的值;
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t﹣3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得t的值,从而求解.
解答:
解:(1)在直角△ABC中,AC==4,
则Q从C到B经过的路程是9,需要的时间是4.5秒.此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5.
根据题意得:(t﹣4.5)+2(t﹣4.5)=7.5,解得:t=7.
(2)Q从C到A的时间是3秒,P从A到C的时间是3秒.
则当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,即3﹣t=2t,解得:t=1.
当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC.则Q在PC的中垂线上,作QH⊥AC,则QH=PC.△AQH∽△ABC,
在直角△AQH中,AQ=2t﹣4,则QH=AQ=.
∵PC=BC﹣BP=3﹣t,
∴×(2t﹣4)=3﹣t,
解得:t=;
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC=t﹣3,BQ=2t﹣9,即AQ=5﹣(2t﹣9)=14﹣2t.
同(2)可得:△PCQ中,PC边上的高是:(14﹣2t),
故s=(2t﹣9)×(14﹣2t)=(﹣t2+10t﹣2).
故当t=5时,s有最大值,此时,P在AC的中点.
∵沿直线PD折叠,使点A落在直线PC上,
∴PD一定是AC的中垂线.
则AP=AC=2,PD=BC=,
则S△APD=AP•PD=×2×=.
AQ=14﹣2t=14﹣2×5=4.
则PC边上的高是:AQ=×4=.
则S△PCQ=PC•=×2×=.
故答案是:7.
2014-12-28
展开全部
自己好好想一想
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询