如何证明子空间的并不为母空间
展开全部
由β的任意性,即证Φα∈V1.从而V1的正交补V1⊥也是Φ的不变子空间。
证明:任取α∈V1⊥,可证Φα∈V1⊥,即Φα∈V1,事实上,任取β∈V1,由于V1是Φ的不变子空间,因此Φβ∈V1,而α∈V1⊥,故(α,Φβ)=0.再由题设,Φ是反对称的,知(Φα,β)=-(α,Φβ)=0。
线性子空间(又称向量子空间,简称子空间)是线性空间中部分向量组成的线性空间。设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间。
定义设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间(或向量子空间),或简称子空间。
证明:任取α∈V1⊥,可证Φα∈V1⊥,即Φα∈V1,事实上,任取β∈V1,由于V1是Φ的不变子空间,因此Φβ∈V1,而α∈V1⊥,故(α,Φβ)=0.再由题设,Φ是反对称的,知(Φα,β)=-(α,Φβ)=0。
线性子空间(又称向量子空间,简称子空间)是线性空间中部分向量组成的线性空间。设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间。
定义设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间(或向量子空间),或简称子空间。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询