求定积分 根号(1-x^2)/x^2dx 上1 下根号2/2
展开全部
let
x= sinu
dx= cosu du
x=√2/2 , u=π/4
x=1, u=π/2
∫(√2/2->1) √(1-x^2) /x^2 dx
=∫(π/4->π/2) [cosu /(sinu)^2] [ cosu du]
=∫(π/4->π/2) (cotu)^2 du
=∫(π/4->π/2) [(cscu)^2 -1 ] du
=[-cotu -u ]|(π/4->π/2)
= (0 - π/2 ) - ( -1 -π/4)
=1 - π/4
x= sinu
dx= cosu du
x=√2/2 , u=π/4
x=1, u=π/2
∫(√2/2->1) √(1-x^2) /x^2 dx
=∫(π/4->π/2) [cosu /(sinu)^2] [ cosu du]
=∫(π/4->π/2) (cotu)^2 du
=∫(π/4->π/2) [(cscu)^2 -1 ] du
=[-cotu -u ]|(π/4->π/2)
= (0 - π/2 ) - ( -1 -π/4)
=1 - π/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询