求一道几何题解法
在三角形ABC中,∠B=90°,M为AB上一点使AM=BC,N为BC上一点使CN=BM,连接ANCM交与P点,求∠APM的度数现在已知一种解法:解:过A作DA⊥AB(D、...
在三角形ABC中,∠B=90° ,M为AB上一点使AM=BC ,N为BC上一点使CN=BM ,连接AN CM 交与P点,求∠APM的度数
现在已知一种解法:
解:过A作DA⊥AB(D、C在AB的同侧),并且使DA=CN=BM,连接CD、DM
因为:∠B=90° 故:DA‖CN 又:DA=CN 故:四边形DANC是平行四边形
故:DC‖AN 故:∠APM=∠DCM
又:在△DAM和△MBC中,DA=BM AM=BC ∠DAM=∠B=90°
故:△DAM≌△MBC
故:MD=MC ∠CMB=∠ADM
又:∠ADM+∠DMA=90°
故:∠CMB+∠DMA=90°
故:∠DMC=90°
即:△MDC为等腰直角△,故:∠DCM=45°=∠APM
即:∠APM=45°
求:别的解法sa~ 展开
现在已知一种解法:
解:过A作DA⊥AB(D、C在AB的同侧),并且使DA=CN=BM,连接CD、DM
因为:∠B=90° 故:DA‖CN 又:DA=CN 故:四边形DANC是平行四边形
故:DC‖AN 故:∠APM=∠DCM
又:在△DAM和△MBC中,DA=BM AM=BC ∠DAM=∠B=90°
故:△DAM≌△MBC
故:MD=MC ∠CMB=∠ADM
又:∠ADM+∠DMA=90°
故:∠CMB+∠DMA=90°
故:∠DMC=90°
即:△MDC为等腰直角△,故:∠DCM=45°=∠APM
即:∠APM=45°
求:别的解法sa~ 展开
2个回答
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询