想问一下用定积分算面积的正负问题,在x轴下方是不可以用积分算面积吗?
1个回答
展开全部
如果用定积分求面积的话,结果一定是正数。
定积分的计算与用定积分计算面积所用的方法都不同。
计算定积分数值的话,就是x轴上面的面积 - x轴下面的面积,结果可正可负。
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分。
若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
定积分的正式名称是黎曼积分。
用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。
实际上,定积分的上下限就是区间的两个端点a,b。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询