高等数学非齐次线性方程组。要有详细过程,非常感谢!!!
4个回答
展开全部
2x1+x2-x3+x4 =1 (1)
4x1+2x2-2x3+x4 =2 (2)
2x1+x2-x3-x4 =1 (3)
(1)+(3)
4x1+2x2-2x3 =2 (4)
(2)-(4)
x4=0
ie
2x1+x2-x3 =1 (5)
4x1+2x2-2x3 =2 (6)
2x1+x2-x3 =1 (7)
(6)=2(5)=2(7)
Rank of system of equations =1
from (1)
2x1+x2-x3 =1
x1 = (1/2)(1-x2+x3)
方程组的解
={ ( (1/2)(1-x2+x3) , x2, x3 , 0 ) | x2,x3∈ R }
4x1+2x2-2x3+x4 =2 (2)
2x1+x2-x3-x4 =1 (3)
(1)+(3)
4x1+2x2-2x3 =2 (4)
(2)-(4)
x4=0
ie
2x1+x2-x3 =1 (5)
4x1+2x2-2x3 =2 (6)
2x1+x2-x3 =1 (7)
(6)=2(5)=2(7)
Rank of system of equations =1
from (1)
2x1+x2-x3 =1
x1 = (1/2)(1-x2+x3)
方程组的解
={ ( (1/2)(1-x2+x3) , x2, x3 , 0 ) | x2,x3∈ R }
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-05-13
展开全部
解析:增广矩阵=21-111
42-212
21-1-11
r2-2r1,r3-r1
21-111
000-10
r1+r2,r3-2r2,r2*(-1)
1 1/2-1/2 0 1/2
00010
00000
通解为(1/2,0,0,0)+c1(-1/2,1,0,0)+c2(1/2,0,1,0),c1,c2为任意常数
42-212
21-1-11
r2-2r1,r3-r1
21-111
000-10
r1+r2,r3-2r2,r2*(-1)
1 1/2-1/2 0 1/2
00010
00000
通解为(1/2,0,0,0)+c1(-1/2,1,0,0)+c2(1/2,0,1,0),c1,c2为任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询