在三角形ABC中,AB=(根号2)+(根号6),∠C=30度,求AC+BC的最大值

在三角形ABC中,AB=(根号2)+(根号6),∠C=30度,求AC+BC的最大值... 在三角形ABC中,AB=(根号2)+(根号6),∠C=30度,求AC+BC的最大值 展开
bangapseumnida
2009-04-01 · TA获得超过5351个赞
知道小有建树答主
回答量:903
采纳率:50%
帮助的人:766万
展开全部
利用正弦定理a/SinA=b/SinB=c/SinC有
AB/SinC=BC/SinA=AC/SinB
再利用连等式性质得到AB/SinC=(BC+AC)/(SinA+SinB)
(√2+√6)/Sin30°=(AC+BC)/(SinA+SinB)
2(√2+√6)=(AC+BC)/[SinA+Sin(150°-A)]
若AC+BC取最大值,那么SinA+Sin(150°-A)就要取最大值
和差化积得到SinA+Sin(150°-A)=2Sin75°Cos(A-75°)
当A=75°时,可取最大值为2Sin75°=2sin(30°+45°)
=2(sin30cos45+sin45cos30)=2(1/2*√2/2+√2/2*√3/2)=(√2+√6)/2
那么AC+BC的最大值就为2Sin75°*2(√2+√6)=(√2+√6)^2=8+4√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式