已知f(x)=x 3 -6x 2 +9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3... 已知f(x)=x 3 -6x 2 +9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0; ②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0.其中正确结论的序号是________. 展开
 我来答
4258361vlgx
2014-08-20 · 超过67用户采纳过TA的回答
知道答主
回答量:136
采纳率:100%
帮助的人:55.8万
展开全部
②③

∵f′(x)=3x 2 -12x+9=3(x-1)(x-3),
由f′(x)<0,得1<x<3,
由f′(x)>0,
得x<1或x>3,
∴f(x)在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.
又a<b<c,f(a)=f(b)=f(c)=0,
∴y 极大值 =f(1)=4-abc>0,
y 极小值 =f(3)=-abc<0.
∴0<abc<4.
∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3为函数f(x)的极值点,后一种情况不可能成立,如图.

∴f(0)<0.∴f(0)f(1)<0,f(0)f(3)>0.∴正确结论的序号是②③.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式