求幂级数收敛区间 100
展开全部
解:1小题,原式=∑(3^n/n)x^n+∑(3^n/n)x^n。
对∑(3^n/n)x^n,有ρ=lim(n→∞)丨an+1/an丨=3lim(n→∞)n/(n+1)=3,∴收敛半径R1=1/ρ=1/3。而lim(n→∞)丨Un+1/Un丨=lim(n→∞)丨x丨/R1<1,∴丨x丨<R1=1/3,即-1/3<x<1/3。同理,对∑(5^n/n)x^n,有-1/5<x<1/5。
∴级数收敛区间为,{x丨-1/3<x<1/3}∩{x丨-1/5<x<1/5}={x丨-1/5<x<1/5}。当x=-1/5时,是交错级数,满足莱布尼兹判别法条件,收敛;当x=1/5时,为p=1的p-级数,发散。
∴级数收敛区间为{x丨-1/5≤x<1/5}。
(2)小题,∵ρ=lim(n→∞)丨an+1/an丨=(1/2)lim(n→∞)(n+1)/n=1/2,∴收敛半径R=1/ρ=2。而lim(n→∞)丨Un+1/Un丨=lim(n→∞)x^2/R<1,∴丨x丨<√R=√2,即-√2<x<√2。
当x=±√2时,级数发散。∴级数收敛区间为{x丨-√2<x<√2}。
供参考。
对∑(3^n/n)x^n,有ρ=lim(n→∞)丨an+1/an丨=3lim(n→∞)n/(n+1)=3,∴收敛半径R1=1/ρ=1/3。而lim(n→∞)丨Un+1/Un丨=lim(n→∞)丨x丨/R1<1,∴丨x丨<R1=1/3,即-1/3<x<1/3。同理,对∑(5^n/n)x^n,有-1/5<x<1/5。
∴级数收敛区间为,{x丨-1/3<x<1/3}∩{x丨-1/5<x<1/5}={x丨-1/5<x<1/5}。当x=-1/5时,是交错级数,满足莱布尼兹判别法条件,收敛;当x=1/5时,为p=1的p-级数,发散。
∴级数收敛区间为{x丨-1/5≤x<1/5}。
(2)小题,∵ρ=lim(n→∞)丨an+1/an丨=(1/2)lim(n→∞)(n+1)/n=1/2,∴收敛半径R=1/ρ=2。而lim(n→∞)丨Un+1/Un丨=lim(n→∞)x^2/R<1,∴丨x丨<√R=√2,即-√2<x<√2。
当x=±√2时,级数发散。∴级数收敛区间为{x丨-√2<x<√2}。
供参考。
展开全部
1、[-1/5,1/5)
2、[-\sqrt{2},+\sqrt{2})
2、[-\sqrt{2},+\sqrt{2})
追问
详细过程?
追答
1、将级数拆成两个级数考虑
\mid 5x\mid<1推出-1/5<x<1/5收敛区间
再考虑端点得到:x=-1/5时收敛,x=1/5时发散
同理\mid 3x\mid<1推出-1/3<x<1/3收敛区间
再考虑端点得到:x=-1/3时收敛,x=1/3时发散
取两个级数收敛区间的交就得到所要求解的级数的收敛区间为[-1/5,1/5)
2、同理可解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询